SYZ予想(SYZ conjecture)は、ミラー対称性予想を理解しようという理論物理学者と数学者による試みである。もともとの予想は、アンドリュー・ストロミンジャー(Andrew Strominger)、シン=トゥン・ヤウ(Shing-Tung Yau)、(Eric Zaslow)による論文 "Mirror Symmetry is T-duality" で提唱された。 SYZ予想は、ホモロジカルミラー対称性予想に沿い、ミラー対称性の理解を数学のことばで行うことの中でもっとも研究されている道具のひとつである。ホモロジカルミラー対称性がホモロジー代数を基礎としていることに対し、SYZ予想はミラー対称性を幾何学的に実現しようとする。

Property Value
dbo:abstract
  • SYZ予想(SYZ conjecture)は、ミラー対称性予想を理解しようという理論物理学者と数学者による試みである。もともとの予想は、アンドリュー・ストロミンジャー(Andrew Strominger)、シン=トゥン・ヤウ(Shing-Tung Yau)、(Eric Zaslow)による論文 "Mirror Symmetry is T-duality" で提唱された。 SYZ予想は、ホモロジカルミラー対称性予想に沿い、ミラー対称性の理解を数学のことばで行うことの中でもっとも研究されている道具のひとつである。ホモロジカルミラー対称性がホモロジー代数を基礎としていることに対し、SYZ予想はミラー対称性を幾何学的に実現しようとする。 (ja)
  • SYZ予想(SYZ conjecture)は、ミラー対称性予想を理解しようという理論物理学者と数学者による試みである。もともとの予想は、アンドリュー・ストロミンジャー(Andrew Strominger)、シン=トゥン・ヤウ(Shing-Tung Yau)、(Eric Zaslow)による論文 "Mirror Symmetry is T-duality" で提唱された。 SYZ予想は、ホモロジカルミラー対称性予想に沿い、ミラー対称性の理解を数学のことばで行うことの中でもっとも研究されている道具のひとつである。ホモロジカルミラー対称性がホモロジー代数を基礎としていることに対し、SYZ予想はミラー対称性を幾何学的に実現しようとする。 (ja)
dbo:wikiPageID
  • 2943463 (xsd:integer)
dbo:wikiPageLength
  • 4499 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 70217431 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • SYZ予想(SYZ conjecture)は、ミラー対称性予想を理解しようという理論物理学者と数学者による試みである。もともとの予想は、アンドリュー・ストロミンジャー(Andrew Strominger)、シン=トゥン・ヤウ(Shing-Tung Yau)、(Eric Zaslow)による論文 "Mirror Symmetry is T-duality" で提唱された。 SYZ予想は、ホモロジカルミラー対称性予想に沿い、ミラー対称性の理解を数学のことばで行うことの中でもっとも研究されている道具のひとつである。ホモロジカルミラー対称性がホモロジー代数を基礎としていることに対し、SYZ予想はミラー対称性を幾何学的に実現しようとする。 (ja)
  • SYZ予想(SYZ conjecture)は、ミラー対称性予想を理解しようという理論物理学者と数学者による試みである。もともとの予想は、アンドリュー・ストロミンジャー(Andrew Strominger)、シン=トゥン・ヤウ(Shing-Tung Yau)、(Eric Zaslow)による論文 "Mirror Symmetry is T-duality" で提唱された。 SYZ予想は、ホモロジカルミラー対称性予想に沿い、ミラー対称性の理解を数学のことばで行うことの中でもっとも研究されている道具のひとつである。ホモロジカルミラー対称性がホモロジー代数を基礎としていることに対し、SYZ予想はミラー対称性を幾何学的に実現しようとする。 (ja)
rdfs:label
  • SYZ予想 (ja)
  • SYZ予想 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of