数学、特に微分学において逆函数定理(ぎゃくかんすうていり、英: inverse function theorem)とは、関数が定義域内のある点の近傍で可逆であるための十分条件を述べるものである。この定理から、逆関数の微分の公式が得られる。 さらに多変数微分積分学においてこの定理は、ヤコビ行列が正則となる点を定義域内に持つ任意の C1 級ベクトル値関数へと一般化される。この一般化から、逆関数のヤコビ行列の公式が得られる。 このほか、複素正則関数、多様体間の可微分写像、バナッハ空間間の可微分写像などに対する逆関数定理も存在する。

Property Value
dbo:abstract
  • 数学、特に微分学において逆函数定理(ぎゃくかんすうていり、英: inverse function theorem)とは、関数が定義域内のある点の近傍で可逆であるための十分条件を述べるものである。この定理から、逆関数の微分の公式が得られる。 さらに多変数微分積分学においてこの定理は、ヤコビ行列が正則となる点を定義域内に持つ任意の C1 級ベクトル値関数へと一般化される。この一般化から、逆関数のヤコビ行列の公式が得られる。 このほか、複素正則関数、多様体間の可微分写像、バナッハ空間間の可微分写像などに対する逆関数定理も存在する。 (ja)
  • 数学、特に微分学において逆函数定理(ぎゃくかんすうていり、英: inverse function theorem)とは、関数が定義域内のある点の近傍で可逆であるための十分条件を述べるものである。この定理から、逆関数の微分の公式が得られる。 さらに多変数微分積分学においてこの定理は、ヤコビ行列が正則となる点を定義域内に持つ任意の C1 級ベクトル値関数へと一般化される。この一般化から、逆関数のヤコビ行列の公式が得られる。 このほか、複素正則関数、多様体間の可微分写像、バナッハ空間間の可微分写像などに対する逆関数定理も存在する。 (ja)
dbo:wikiPageID
  • 3086801 (xsd:integer)
dbo:wikiPageInterLanguageLink
dbo:wikiPageLength
  • 8814 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90275396 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学、特に微分学において逆函数定理(ぎゃくかんすうていり、英: inverse function theorem)とは、関数が定義域内のある点の近傍で可逆であるための十分条件を述べるものである。この定理から、逆関数の微分の公式が得られる。 さらに多変数微分積分学においてこの定理は、ヤコビ行列が正則となる点を定義域内に持つ任意の C1 級ベクトル値関数へと一般化される。この一般化から、逆関数のヤコビ行列の公式が得られる。 このほか、複素正則関数、多様体間の可微分写像、バナッハ空間間の可微分写像などに対する逆関数定理も存在する。 (ja)
  • 数学、特に微分学において逆函数定理(ぎゃくかんすうていり、英: inverse function theorem)とは、関数が定義域内のある点の近傍で可逆であるための十分条件を述べるものである。この定理から、逆関数の微分の公式が得られる。 さらに多変数微分積分学においてこの定理は、ヤコビ行列が正則となる点を定義域内に持つ任意の C1 級ベクトル値関数へと一般化される。この一般化から、逆関数のヤコビ行列の公式が得られる。 このほか、複素正則関数、多様体間の可微分写像、バナッハ空間間の可微分写像などに対する逆関数定理も存在する。 (ja)
rdfs:label
  • 逆函数定理 (ja)
  • 逆函数定理 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of