Property |
Value |
dbo:abstract
|
- 正八胞体(せいはちほうたい、または四次元超立方体、8-cell、octachoron(オクタコロン)、tesseract(テッセラクト、テセラクト))とは、四次元正多胞体の一種で8個の立方体からなる、四次元の超立方体である。
* 胞(構成立体):立方体8個
* 面:24枚の各正方形に立方体2個が集まる。
* 辺:32本の各辺に正方形3枚、立方体3個が集まる。
* 頂点:16個の各頂点に辺4本、正方形6枚、立方体4個が集まる。
* 双対:正十六胞体
* シュレーフリの記号:{4,3,3} 胞、面、辺、頂点の数はの第5段(Layer 4)の三角形の各段の数字の総和に等しい。超立方体の対角線に沿って見た場合、胞、面、辺、頂点は各段の数字通りのグループに分割される。また面、辺、頂点に集まる図形の数はそれぞれの形状により、線分の端点の数(パスカルの三角形の第3段)、正三角形の頂点と辺の数(第4段)、正四面体の頂点と辺と面の数(第5段)に等しい。 立方体の針金をせっけん液に二度浸してシャボン玉を作ると、正八胞体のある種の三次元投影図の形になることが知られている(ただし、このときできる面はわずかに曲がっている)。 (ja)
- 正八胞体(せいはちほうたい、または四次元超立方体、8-cell、octachoron(オクタコロン)、tesseract(テッセラクト、テセラクト))とは、四次元正多胞体の一種で8個の立方体からなる、四次元の超立方体である。
* 胞(構成立体):立方体8個
* 面:24枚の各正方形に立方体2個が集まる。
* 辺:32本の各辺に正方形3枚、立方体3個が集まる。
* 頂点:16個の各頂点に辺4本、正方形6枚、立方体4個が集まる。
* 双対:正十六胞体
* シュレーフリの記号:{4,3,3} 胞、面、辺、頂点の数はの第5段(Layer 4)の三角形の各段の数字の総和に等しい。超立方体の対角線に沿って見た場合、胞、面、辺、頂点は各段の数字通りのグループに分割される。また面、辺、頂点に集まる図形の数はそれぞれの形状により、線分の端点の数(パスカルの三角形の第3段)、正三角形の頂点と辺の数(第4段)、正四面体の頂点と辺と面の数(第5段)に等しい。 立方体の針金をせっけん液に二度浸してシャボン玉を作ると、正八胞体のある種の三次元投影図の形になることが知られている(ただし、このときできる面はわずかに曲がっている)。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1330 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 正八胞体(せいはちほうたい、または四次元超立方体、8-cell、octachoron(オクタコロン)、tesseract(テッセラクト、テセラクト))とは、四次元正多胞体の一種で8個の立方体からなる、四次元の超立方体である。
* 胞(構成立体):立方体8個
* 面:24枚の各正方形に立方体2個が集まる。
* 辺:32本の各辺に正方形3枚、立方体3個が集まる。
* 頂点:16個の各頂点に辺4本、正方形6枚、立方体4個が集まる。
* 双対:正十六胞体
* シュレーフリの記号:{4,3,3} 胞、面、辺、頂点の数はの第5段(Layer 4)の三角形の各段の数字の総和に等しい。超立方体の対角線に沿って見た場合、胞、面、辺、頂点は各段の数字通りのグループに分割される。また面、辺、頂点に集まる図形の数はそれぞれの形状により、線分の端点の数(パスカルの三角形の第3段)、正三角形の頂点と辺の数(第4段)、正四面体の頂点と辺と面の数(第5段)に等しい。 立方体の針金をせっけん液に二度浸してシャボン玉を作ると、正八胞体のある種の三次元投影図の形になることが知られている(ただし、このときできる面はわずかに曲がっている)。 (ja)
- 正八胞体(せいはちほうたい、または四次元超立方体、8-cell、octachoron(オクタコロン)、tesseract(テッセラクト、テセラクト))とは、四次元正多胞体の一種で8個の立方体からなる、四次元の超立方体である。
* 胞(構成立体):立方体8個
* 面:24枚の各正方形に立方体2個が集まる。
* 辺:32本の各辺に正方形3枚、立方体3個が集まる。
* 頂点:16個の各頂点に辺4本、正方形6枚、立方体4個が集まる。
* 双対:正十六胞体
* シュレーフリの記号:{4,3,3} 胞、面、辺、頂点の数はの第5段(Layer 4)の三角形の各段の数字の総和に等しい。超立方体の対角線に沿って見た場合、胞、面、辺、頂点は各段の数字通りのグループに分割される。また面、辺、頂点に集まる図形の数はそれぞれの形状により、線分の端点の数(パスカルの三角形の第3段)、正三角形の頂点と辺の数(第4段)、正四面体の頂点と辺と面の数(第5段)に等しい。 立方体の針金をせっけん液に二度浸してシャボン玉を作ると、正八胞体のある種の三次元投影図の形になることが知られている(ただし、このときできる面はわずかに曲がっている)。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |