数学におけるガンマ函数関連の特殊函数の乗法定理(じょうほうていり、英: multiplication theorem)は、それぞれの函数が持つある種の恒等式を言う。特にガンマ函数の場合、明示的に値の積に関する等式が与えられるのでこの名がある。これら様々な関係式の根底には同じ原理が横たわっている。つまり一つの特殊函数に対する関係式は他の特殊函数の関係式から導き出すことがでるということであり、またそれは単に同じ等式の別の顔が現れたものと言うことである。

Property Value
dbo:abstract
  • 数学におけるガンマ函数関連の特殊函数の乗法定理(じょうほうていり、英: multiplication theorem)は、それぞれの函数が持つある種の恒等式を言う。特にガンマ函数の場合、明示的に値の積に関する等式が与えられるのでこの名がある。これら様々な関係式の根底には同じ原理が横たわっている。つまり一つの特殊函数に対する関係式は他の特殊函数の関係式から導き出すことがでるということであり、またそれは単に同じ等式の別の顔が現れたものと言うことである。 (ja)
  • 数学におけるガンマ函数関連の特殊函数の乗法定理(じょうほうていり、英: multiplication theorem)は、それぞれの函数が持つある種の恒等式を言う。特にガンマ函数の場合、明示的に値の積に関する等式が与えられるのでこの名がある。これら様々な関係式の根底には同じ原理が横たわっている。つまり一つの特殊函数に対する関係式は他の特殊函数の関係式から導き出すことがでるということであり、またそれは単に同じ等式の別の顔が現れたものと言うことである。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3622064 (xsd:integer)
dbo:wikiPageLength
  • 6731 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 69377344 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:title
  • Gamma-function (ja)
  • Gauss Multiplication Formula (ja)
  • Legendre Duplication Formula (ja)
  • Gamma-function (ja)
  • Gauss Multiplication Formula (ja)
  • Legendre Duplication Formula (ja)
prop-ja:urlname
  • Gamma-function (ja)
  • GaussMultiplicationFormula (ja)
  • Gauss_Multiplication_Formula (ja)
  • LegendreDuplicationFormula (ja)
  • Gamma-function (ja)
  • GaussMultiplicationFormula (ja)
  • Gauss_Multiplication_Formula (ja)
  • LegendreDuplicationFormula (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学におけるガンマ函数関連の特殊函数の乗法定理(じょうほうていり、英: multiplication theorem)は、それぞれの函数が持つある種の恒等式を言う。特にガンマ函数の場合、明示的に値の積に関する等式が与えられるのでこの名がある。これら様々な関係式の根底には同じ原理が横たわっている。つまり一つの特殊函数に対する関係式は他の特殊函数の関係式から導き出すことがでるということであり、またそれは単に同じ等式の別の顔が現れたものと言うことである。 (ja)
  • 数学におけるガンマ函数関連の特殊函数の乗法定理(じょうほうていり、英: multiplication theorem)は、それぞれの函数が持つある種の恒等式を言う。特にガンマ函数の場合、明示的に値の積に関する等式が与えられるのでこの名がある。これら様々な関係式の根底には同じ原理が横たわっている。つまり一つの特殊函数に対する関係式は他の特殊函数の関係式から導き出すことがでるということであり、またそれは単に同じ等式の別の顔が現れたものと言うことである。 (ja)
rdfs:label
  • 乗法定理 (ja)
  • 乗法定理 (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of