Property |
Value |
dbo:abstract
|
- 統計学において、一元配置分散分析(いちげんはいちぶんさんぶんせき、英: one-way analysis of variance、略称: one-way ANOVA)は、F分布を用いて3つ以上の標本の平均を比較するために使われる手法である。この手法は数値データに対してのみ使うことができる。 ANOVAは、2つ以上の群の中の標本が同じ平均値を持つ母集団から取られた、という帰無仮説を検定する。これを行うために、2つの推定量が母集団の分散から作られる。これらの推定量は様々な仮定に依っている。ANOVA は、平均間の計算された分散と標本内の分散の比であるF統計量を生成する。もし複数の群の平均が同じ平均値の母集団から取られれば、中心極限定理にしたがって群の平均間の分散は標本の分散よりも低くなる。したがって、高い比は標本が異なる平均値を持つ母集団から取られたものであることを示唆する。 しかしながら、典型的には、one-way ANOVAは少なくとも3つ以上の群間の差の検定のために使われる。これは、2群の場合はt検定で取り扱うことができるためである。比較する平均が2つしかない時は、t検定とF検定は等価である。ANOVAとtとの間の関係はF = t2によって与えられる。One-way ANOVAの拡張は、1つの従属変数に対する2つの異なる分類の独立変数の影響を調べるである。 (ja)
- 統計学において、一元配置分散分析(いちげんはいちぶんさんぶんせき、英: one-way analysis of variance、略称: one-way ANOVA)は、F分布を用いて3つ以上の標本の平均を比較するために使われる手法である。この手法は数値データに対してのみ使うことができる。 ANOVAは、2つ以上の群の中の標本が同じ平均値を持つ母集団から取られた、という帰無仮説を検定する。これを行うために、2つの推定量が母集団の分散から作られる。これらの推定量は様々な仮定に依っている。ANOVA は、平均間の計算された分散と標本内の分散の比であるF統計量を生成する。もし複数の群の平均が同じ平均値の母集団から取られれば、中心極限定理にしたがって群の平均間の分散は標本の分散よりも低くなる。したがって、高い比は標本が異なる平均値を持つ母集団から取られたものであることを示唆する。 しかしながら、典型的には、one-way ANOVAは少なくとも3つ以上の群間の差の検定のために使われる。これは、2群の場合はt検定で取り扱うことができるためである。比較する平均が2つしかない時は、t検定とF検定は等価である。ANOVAとtとの間の関係はF = t2によって与えられる。One-way ANOVAの拡張は、1つの従属変数に対する2つの異なる分類の独立変数の影響を調べるである。 (ja)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 7294 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 統計学において、一元配置分散分析(いちげんはいちぶんさんぶんせき、英: one-way analysis of variance、略称: one-way ANOVA)は、F分布を用いて3つ以上の標本の平均を比較するために使われる手法である。この手法は数値データに対してのみ使うことができる。 ANOVAは、2つ以上の群の中の標本が同じ平均値を持つ母集団から取られた、という帰無仮説を検定する。これを行うために、2つの推定量が母集団の分散から作られる。これらの推定量は様々な仮定に依っている。ANOVA は、平均間の計算された分散と標本内の分散の比であるF統計量を生成する。もし複数の群の平均が同じ平均値の母集団から取られれば、中心極限定理にしたがって群の平均間の分散は標本の分散よりも低くなる。したがって、高い比は標本が異なる平均値を持つ母集団から取られたものであることを示唆する。 しかしながら、典型的には、one-way ANOVAは少なくとも3つ以上の群間の差の検定のために使われる。これは、2群の場合はt検定で取り扱うことができるためである。比較する平均が2つしかない時は、t検定とF検定は等価である。ANOVAとtとの間の関係はF = t2によって与えられる。One-way ANOVAの拡張は、1つの従属変数に対する2つの異なる分類の独立変数の影響を調べるである。 (ja)
- 統計学において、一元配置分散分析(いちげんはいちぶんさんぶんせき、英: one-way analysis of variance、略称: one-way ANOVA)は、F分布を用いて3つ以上の標本の平均を比較するために使われる手法である。この手法は数値データに対してのみ使うことができる。 ANOVAは、2つ以上の群の中の標本が同じ平均値を持つ母集団から取られた、という帰無仮説を検定する。これを行うために、2つの推定量が母集団の分散から作られる。これらの推定量は様々な仮定に依っている。ANOVA は、平均間の計算された分散と標本内の分散の比であるF統計量を生成する。もし複数の群の平均が同じ平均値の母集団から取られれば、中心極限定理にしたがって群の平均間の分散は標本の分散よりも低くなる。したがって、高い比は標本が異なる平均値を持つ母集団から取られたものであることを示唆する。 しかしながら、典型的には、one-way ANOVAは少なくとも3つ以上の群間の差の検定のために使われる。これは、2群の場合はt検定で取り扱うことができるためである。比較する平均が2つしかない時は、t検定とF検定は等価である。ANOVAとtとの間の関係はF = t2によって与えられる。One-way ANOVAの拡張は、1つの従属変数に対する2つの異なる分類の独立変数の影響を調べるである。 (ja)
|
rdfs:label
|
- 一元配置分散分析 (ja)
- 一元配置分散分析 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |