Property |
Value |
dbo:abstract
|
- ルーローの四面体(ルーローのしめんたい、Reuleaux tetrahedron)は、正四面体の各頂点を中心とし、正四面体の辺長(以下 s とする)を半径とする、4つの球の共通部分である。 ルーローの四面体は4つの頂点、6つの辺、4つの面を持ち、正四面体と同相である。しかし、面が平面ではなく膨らんでおり、各頂点を中心とし半径 s の球面の部分集合になっている。また辺も線分ではなく、各頂点を中心とし半径 s の円弧である。そのため、多面体ではない。 ルーローの四面体の定義はルーローの三角形の定義をそのまま3次元に拡張したものといえる。ルーローの四面体の3つの頂点を通る平面での断面は、ルーローの三角形である。 (ja)
- ルーローの四面体(ルーローのしめんたい、Reuleaux tetrahedron)は、正四面体の各頂点を中心とし、正四面体の辺長(以下 s とする)を半径とする、4つの球の共通部分である。 ルーローの四面体は4つの頂点、6つの辺、4つの面を持ち、正四面体と同相である。しかし、面が平面ではなく膨らんでおり、各頂点を中心とし半径 s の球面の部分集合になっている。また辺も線分ではなく、各頂点を中心とし半径 s の円弧である。そのため、多面体ではない。 ルーローの四面体の定義はルーローの三角形の定義をそのまま3次元に拡張したものといえる。ルーローの四面体の3つの頂点を通る平面での断面は、ルーローの三角形である。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2080 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:title
|
- Reuleaux Tetrahedron (ja)
- Reuleaux Tetrahedron (ja)
|
prop-ja:urlname
|
- ReuleauxTetrahedron (ja)
- ReuleauxTetrahedron (ja)
|
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- ルーローの四面体(ルーローのしめんたい、Reuleaux tetrahedron)は、正四面体の各頂点を中心とし、正四面体の辺長(以下 s とする)を半径とする、4つの球の共通部分である。 ルーローの四面体は4つの頂点、6つの辺、4つの面を持ち、正四面体と同相である。しかし、面が平面ではなく膨らんでおり、各頂点を中心とし半径 s の球面の部分集合になっている。また辺も線分ではなく、各頂点を中心とし半径 s の円弧である。そのため、多面体ではない。 ルーローの四面体の定義はルーローの三角形の定義をそのまま3次元に拡張したものといえる。ルーローの四面体の3つの頂点を通る平面での断面は、ルーローの三角形である。 (ja)
- ルーローの四面体(ルーローのしめんたい、Reuleaux tetrahedron)は、正四面体の各頂点を中心とし、正四面体の辺長(以下 s とする)を半径とする、4つの球の共通部分である。 ルーローの四面体は4つの頂点、6つの辺、4つの面を持ち、正四面体と同相である。しかし、面が平面ではなく膨らんでおり、各頂点を中心とし半径 s の球面の部分集合になっている。また辺も線分ではなく、各頂点を中心とし半径 s の円弧である。そのため、多面体ではない。 ルーローの四面体の定義はルーローの三角形の定義をそのまま3次元に拡張したものといえる。ルーローの四面体の3つの頂点を通る平面での断面は、ルーローの三角形である。 (ja)
|
rdfs:label
|
- ルーローの四面体 (ja)
- ルーローの四面体 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |