Property |
Value |
dbo:abstract
|
- コーシー分布(コーシーぶんぷ、英語: Cauchy distribution)は、連続確率分布の一種である。分布の名称は、フランスの数学者オーギュスタン=ルイ・コーシーに因む。確率密度関数は以下の式で与えられる。 ここで x0 は分布の最頻値を与える、γ は半値半幅を与えるである。 この分布は、ヘンドリック・ローレンツの名を取ってローレンツ分布と呼ばれることもあり、またこれら2人の名前を合わせてコーシー-ローレンツ分布とも呼ばれる。また物理学の分野では、ブライト・ウィグナー分布という名前で知られている。この分布は強制共鳴を記述する微分方程式の解となることから、物理学では重要な存在となっている。また分光学では共鳴広がりを含む多くのメカニズムによって広げられたスペクトル線の形状を記述するために用いられる。以下では、統計学における名称であるコーシー分布を用いて説明する。 x0 = 0, γ = 1 である場合、この分布は標準コーシー分布と呼ばれ、以下の確率密度関数で与えられる。 (ja)
- コーシー分布(コーシーぶんぷ、英語: Cauchy distribution)は、連続確率分布の一種である。分布の名称は、フランスの数学者オーギュスタン=ルイ・コーシーに因む。確率密度関数は以下の式で与えられる。 ここで x0 は分布の最頻値を与える、γ は半値半幅を与えるである。 この分布は、ヘンドリック・ローレンツの名を取ってローレンツ分布と呼ばれることもあり、またこれら2人の名前を合わせてコーシー-ローレンツ分布とも呼ばれる。また物理学の分野では、ブライト・ウィグナー分布という名前で知られている。この分布は強制共鳴を記述する微分方程式の解となることから、物理学では重要な存在となっている。また分光学では共鳴広がりを含む多くのメカニズムによって広げられたスペクトル線の形状を記述するために用いられる。以下では、統計学における名称であるコーシー分布を用いて説明する。 x0 = 0, γ = 1 である場合、この分布は標準コーシー分布と呼ばれ、以下の確率密度関数で与えられる。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5061 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:wikiPageUsesTemplate
| |
prop-ja:モーメント母関数
| |
prop-ja:分散
| |
prop-ja:名前
|
- コーシー(ローレンツ)分布 (ja)
- コーシー(ローレンツ)分布 (ja)
|
prop-ja:型
| |
prop-ja:尖度
| |
prop-ja:期待値
| |
prop-ja:歪度
| |
prop-ja:母数
| |
prop-ja:画像/分布関数
|
- 325 (xsd:integer)
- 色は確率密度関数と同じ (ja)
|
prop-ja:画像/確率関数
|
- 325 (xsd:integer)
- 緑線が標準コーシー分布 (ja)
|
dct:subject
| |
rdfs:comment
|
- コーシー分布(コーシーぶんぷ、英語: Cauchy distribution)は、連続確率分布の一種である。分布の名称は、フランスの数学者オーギュスタン=ルイ・コーシーに因む。確率密度関数は以下の式で与えられる。 ここで x0 は分布の最頻値を与える、γ は半値半幅を与えるである。 この分布は、ヘンドリック・ローレンツの名を取ってローレンツ分布と呼ばれることもあり、またこれら2人の名前を合わせてコーシー-ローレンツ分布とも呼ばれる。また物理学の分野では、ブライト・ウィグナー分布という名前で知られている。この分布は強制共鳴を記述する微分方程式の解となることから、物理学では重要な存在となっている。また分光学では共鳴広がりを含む多くのメカニズムによって広げられたスペクトル線の形状を記述するために用いられる。以下では、統計学における名称であるコーシー分布を用いて説明する。 x0 = 0, γ = 1 である場合、この分布は標準コーシー分布と呼ばれ、以下の確率密度関数で与えられる。 (ja)
- コーシー分布(コーシーぶんぷ、英語: Cauchy distribution)は、連続確率分布の一種である。分布の名称は、フランスの数学者オーギュスタン=ルイ・コーシーに因む。確率密度関数は以下の式で与えられる。 ここで x0 は分布の最頻値を与える、γ は半値半幅を与えるである。 この分布は、ヘンドリック・ローレンツの名を取ってローレンツ分布と呼ばれることもあり、またこれら2人の名前を合わせてコーシー-ローレンツ分布とも呼ばれる。また物理学の分野では、ブライト・ウィグナー分布という名前で知られている。この分布は強制共鳴を記述する微分方程式の解となることから、物理学では重要な存在となっている。また分光学では共鳴広がりを含む多くのメカニズムによって広げられたスペクトル線の形状を記述するために用いられる。以下では、統計学における名称であるコーシー分布を用いて説明する。 x0 = 0, γ = 1 である場合、この分布は標準コーシー分布と呼ばれ、以下の確率密度関数で与えられる。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |