数学の結び目理論においてコンツェビッチ不変量(Kontsevich invariant)又はコンツェビッチ積分(Kontsevich integral)とは、反復積分によって定義される結び目または絡み目の不変量である。全ての有限型不変量、特に量子不変量はコンツェビッチ不変量から復元されるため、普遍量子不変量と呼ばれることもある。 1990年代初頭にマキシム・コンツェビッチが定義した。 この項では関連する概念としてヤコビ図についても述べる。

Property Value
dbo:abstract
  • 数学の結び目理論においてコンツェビッチ不変量(Kontsevich invariant)又はコンツェビッチ積分(Kontsevich integral)とは、反復積分によって定義される結び目または絡み目の不変量である。全ての有限型不変量、特に量子不変量はコンツェビッチ不変量から復元されるため、普遍量子不変量と呼ばれることもある。 1990年代初頭にマキシム・コンツェビッチが定義した。 この項では関連する概念としてヤコビ図についても述べる。 (ja)
  • 数学の結び目理論においてコンツェビッチ不変量(Kontsevich invariant)又はコンツェビッチ積分(Kontsevich integral)とは、反復積分によって定義される結び目または絡み目の不変量である。全ての有限型不変量、特に量子不変量はコンツェビッチ不変量から復元されるため、普遍量子不変量と呼ばれることもある。 1990年代初頭にマキシム・コンツェビッチが定義した。 この項では関連する概念としてヤコビ図についても述べる。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 1857992 (xsd:integer)
dbo:wikiPageLength
  • 8248 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 67860030 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の結び目理論においてコンツェビッチ不変量(Kontsevich invariant)又はコンツェビッチ積分(Kontsevich integral)とは、反復積分によって定義される結び目または絡み目の不変量である。全ての有限型不変量、特に量子不変量はコンツェビッチ不変量から復元されるため、普遍量子不変量と呼ばれることもある。 1990年代初頭にマキシム・コンツェビッチが定義した。 この項では関連する概念としてヤコビ図についても述べる。 (ja)
  • 数学の結び目理論においてコンツェビッチ不変量(Kontsevich invariant)又はコンツェビッチ積分(Kontsevich integral)とは、反復積分によって定義される結び目または絡み目の不変量である。全ての有限型不変量、特に量子不変量はコンツェビッチ不変量から復元されるため、普遍量子不変量と呼ばれることもある。 1990年代初頭にマキシム・コンツェビッチが定義した。 この項では関連する概念としてヤコビ図についても述べる。 (ja)
rdfs:label
  • コンツェビッチ不変量 (ja)
  • コンツェビッチ不変量 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of