スケープゴートツリーは計算機科学における平衡二分探索木の一種である。Arne Anderssonと、Igal Galperinとロナルド・リベストによって発明された。探索、挿入、削除の償却時間計算量がO(log n)であり、探索においては最悪時間計算量もO(log n)である。 探索の最悪時間計算量がO(log n)である他の平衡二分探索木と異なる特徴として、スケープゴート木はノードごとに新たな要素を持たないため、メモリオーバーヘッドがない。つまり、ノードはキーと左右の子を指す2つのポインタのみを保存する。この性質によって、スケープゴート木の実装が容易になる上、データ構造アライメントによりノードのオーバーヘッドを最大3分の1に削減できる。 多くの平衡木は、平衡を維持するために何度も簡単な処理を呼ぶが、スケープゴート木は複雑な処理を低確率で呼ぶという違いがある。スケープゴート木では平衡を維持するために、「スケープゴート」と呼ばれる特定のノードを根とする部分木を完全二分木として再構築する。したがって、スケープゴート木の更新の時間計算量は、最悪の場合O (n)である。

Property Value
dbo:abstract
  • スケープゴートツリーは計算機科学における平衡二分探索木の一種である。Arne Anderssonと、Igal Galperinとロナルド・リベストによって発明された。探索、挿入、削除の償却時間計算量がO(log n)であり、探索においては最悪時間計算量もO(log n)である。 探索の最悪時間計算量がO(log n)である他の平衡二分探索木と異なる特徴として、スケープゴート木はノードごとに新たな要素を持たないため、メモリオーバーヘッドがない。つまり、ノードはキーと左右の子を指す2つのポインタのみを保存する。この性質によって、スケープゴート木の実装が容易になる上、データ構造アライメントによりノードのオーバーヘッドを最大3分の1に削減できる。 多くの平衡木は、平衡を維持するために何度も簡単な処理を呼ぶが、スケープゴート木は複雑な処理を低確率で呼ぶという違いがある。スケープゴート木では平衡を維持するために、「スケープゴート」と呼ばれる特定のノードを根とする部分木を完全二分木として再構築する。したがって、スケープゴート木の更新の時間計算量は、最悪の場合O (n)である。 (ja)
  • スケープゴートツリーは計算機科学における平衡二分探索木の一種である。Arne Anderssonと、Igal Galperinとロナルド・リベストによって発明された。探索、挿入、削除の償却時間計算量がO(log n)であり、探索においては最悪時間計算量もO(log n)である。 探索の最悪時間計算量がO(log n)である他の平衡二分探索木と異なる特徴として、スケープゴート木はノードごとに新たな要素を持たないため、メモリオーバーヘッドがない。つまり、ノードはキーと左右の子を指す2つのポインタのみを保存する。この性質によって、スケープゴート木の実装が容易になる上、データ構造アライメントによりノードのオーバーヘッドを最大3分の1に削減できる。 多くの平衡木は、平衡を維持するために何度も簡単な処理を呼ぶが、スケープゴート木は複雑な処理を低確率で呼ぶという違いがある。スケープゴート木では平衡を維持するために、「スケープゴート」と呼ばれる特定のノードを根とする部分木を完全二分木として再構築する。したがって、スケープゴート木の更新の時間計算量は、最悪の場合O (n)である。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 4202378 (xsd:integer)
dbo:wikiPageLength
  • 8119 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 79321833 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:deleteAvg
  • O (ja)
  • O (ja)
prop-en:deleteWorst
  • 償却されたO (ja)
  • 償却されたO (ja)
prop-en:insertAvg
  • O (ja)
  • O (ja)
prop-en:insertWorst
  • 償却されたO (ja)
  • 償却されたO (ja)
prop-en:inventedBy
  • アルネ・アンダーソン、アイガル・ガリペリン、ロナルド・リベスト (ja)
  • アルネ・アンダーソン、アイガル・ガリペリン、ロナルド・リベスト (ja)
prop-en:name
  • Scapegoat tree (ja)
  • Scapegoat tree (ja)
prop-en:searchAvg
  • O (ja)
  • O (ja)
prop-en:searchWorst
  • O (ja)
  • O (ja)
prop-en:spaceAvg
  • O (ja)
  • O (ja)
prop-en:spaceWorst
  • O (ja)
  • O (ja)
prop-en:type
  • (ja)
  • (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • スケープゴートツリーは計算機科学における平衡二分探索木の一種である。Arne Anderssonと、Igal Galperinとロナルド・リベストによって発明された。探索、挿入、削除の償却時間計算量がO(log n)であり、探索においては最悪時間計算量もO(log n)である。 探索の最悪時間計算量がO(log n)である他の平衡二分探索木と異なる特徴として、スケープゴート木はノードごとに新たな要素を持たないため、メモリオーバーヘッドがない。つまり、ノードはキーと左右の子を指す2つのポインタのみを保存する。この性質によって、スケープゴート木の実装が容易になる上、データ構造アライメントによりノードのオーバーヘッドを最大3分の1に削減できる。 多くの平衡木は、平衡を維持するために何度も簡単な処理を呼ぶが、スケープゴート木は複雑な処理を低確率で呼ぶという違いがある。スケープゴート木では平衡を維持するために、「スケープゴート」と呼ばれる特定のノードを根とする部分木を完全二分木として再構築する。したがって、スケープゴート木の更新の時間計算量は、最悪の場合O (n)である。 (ja)
  • スケープゴートツリーは計算機科学における平衡二分探索木の一種である。Arne Anderssonと、Igal Galperinとロナルド・リベストによって発明された。探索、挿入、削除の償却時間計算量がO(log n)であり、探索においては最悪時間計算量もO(log n)である。 探索の最悪時間計算量がO(log n)である他の平衡二分探索木と異なる特徴として、スケープゴート木はノードごとに新たな要素を持たないため、メモリオーバーヘッドがない。つまり、ノードはキーと左右の子を指す2つのポインタのみを保存する。この性質によって、スケープゴート木の実装が容易になる上、データ構造アライメントによりノードのオーバーヘッドを最大3分の1に削減できる。 多くの平衡木は、平衡を維持するために何度も簡単な処理を呼ぶが、スケープゴート木は複雑な処理を低確率で呼ぶという違いがある。スケープゴート木では平衡を維持するために、「スケープゴート」と呼ばれる特定のノードを根とする部分木を完全二分木として再構築する。したがって、スケープゴート木の更新の時間計算量は、最悪の場合O (n)である。 (ja)
rdfs:label
  • スケープゴート木 (ja)
  • スケープゴート木 (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of