表皮効果(ひょうひこうか)は交流電流が導体を流れるとき、電流密度が導体の表面で高く、表面から離れると低くなる現象のことである。周波数が高くなるほど電流が表面へ集中するので、導体の交流抵抗は高くなる。 一般に高周波における影響が論じられることが多いが、電力系統など大電流を扱う際にも重要で、直流送電が有利とされる理由の一つでもある。 表皮効果は多くの科学者が研究し、ウィリアム・トムソン(ケルヴィン卿)によって1887年に説明された。導体の電流密度Jは 深さδに対して、次式のように減少する。 ここで d は表皮深さで、電流が 表面電流の1/e (約 0.37)になる深さであり次のように計算される。 ρ = 導体の電気抵抗率ω = 電流の角周波数 = 2π × 周波数μ = 導体の絶対透磁率 dの厚さの平板が直流電流に対して生じる抵抗と、厚さがdよりもっと厚い平板の交流電流に対する抵抗は同じである。交流電流に対して電線は直流電流に対する厚さdのパイプのような抵抗を示す。. 例として、円形断面の電線の抵抗は概略以下のようになる。 L = 導体の長さD = 導体の径 D >> dの場合に上の式は成り立つ。

Property Value
dbo:abstract
  • 表皮効果(ひょうひこうか)は交流電流が導体を流れるとき、電流密度が導体の表面で高く、表面から離れると低くなる現象のことである。周波数が高くなるほど電流が表面へ集中するので、導体の交流抵抗は高くなる。 一般に高周波における影響が論じられることが多いが、電力系統など大電流を扱う際にも重要で、直流送電が有利とされる理由の一つでもある。 表皮効果は多くの科学者が研究し、ウィリアム・トムソン(ケルヴィン卿)によって1887年に説明された。導体の電流密度Jは 深さδに対して、次式のように減少する。 ここで d は表皮深さで、電流が 表面電流の1/e (約 0.37)になる深さであり次のように計算される。 ρ = 導体の電気抵抗率ω = 電流の角周波数 = 2π × 周波数μ = 導体の絶対透磁率 dの厚さの平板が直流電流に対して生じる抵抗と、厚さがdよりもっと厚い平板の交流電流に対する抵抗は同じである。交流電流に対して電線は直流電流に対する厚さdのパイプのような抵抗を示す。. 例として、円形断面の電線の抵抗は概略以下のようになる。 L = 導体の長さD = 導体の径 D >> dの場合に上の式は成り立つ。 (ja)
  • 表皮効果(ひょうひこうか)は交流電流が導体を流れるとき、電流密度が導体の表面で高く、表面から離れると低くなる現象のことである。周波数が高くなるほど電流が表面へ集中するので、導体の交流抵抗は高くなる。 一般に高周波における影響が論じられることが多いが、電力系統など大電流を扱う際にも重要で、直流送電が有利とされる理由の一つでもある。 表皮効果は多くの科学者が研究し、ウィリアム・トムソン(ケルヴィン卿)によって1887年に説明された。導体の電流密度Jは 深さδに対して、次式のように減少する。 ここで d は表皮深さで、電流が 表面電流の1/e (約 0.37)になる深さであり次のように計算される。 ρ = 導体の電気抵抗率ω = 電流の角周波数 = 2π × 周波数μ = 導体の絶対透磁率 dの厚さの平板が直流電流に対して生じる抵抗と、厚さがdよりもっと厚い平板の交流電流に対する抵抗は同じである。交流電流に対して電線は直流電流に対する厚さdのパイプのような抵抗を示す。. 例として、円形断面の電線の抵抗は概略以下のようになる。 L = 導体の長さD = 導体の径 D >> dの場合に上の式は成り立つ。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 77283 (xsd:integer)
dbo:wikiPageLength
  • 1200 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 87602218 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 表皮効果(ひょうひこうか)は交流電流が導体を流れるとき、電流密度が導体の表面で高く、表面から離れると低くなる現象のことである。周波数が高くなるほど電流が表面へ集中するので、導体の交流抵抗は高くなる。 一般に高周波における影響が論じられることが多いが、電力系統など大電流を扱う際にも重要で、直流送電が有利とされる理由の一つでもある。 表皮効果は多くの科学者が研究し、ウィリアム・トムソン(ケルヴィン卿)によって1887年に説明された。導体の電流密度Jは 深さδに対して、次式のように減少する。 ここで d は表皮深さで、電流が 表面電流の1/e (約 0.37)になる深さであり次のように計算される。 ρ = 導体の電気抵抗率ω = 電流の角周波数 = 2π × 周波数μ = 導体の絶対透磁率 dの厚さの平板が直流電流に対して生じる抵抗と、厚さがdよりもっと厚い平板の交流電流に対する抵抗は同じである。交流電流に対して電線は直流電流に対する厚さdのパイプのような抵抗を示す。. 例として、円形断面の電線の抵抗は概略以下のようになる。 L = 導体の長さD = 導体の径 D >> dの場合に上の式は成り立つ。 (ja)
  • 表皮効果(ひょうひこうか)は交流電流が導体を流れるとき、電流密度が導体の表面で高く、表面から離れると低くなる現象のことである。周波数が高くなるほど電流が表面へ集中するので、導体の交流抵抗は高くなる。 一般に高周波における影響が論じられることが多いが、電力系統など大電流を扱う際にも重要で、直流送電が有利とされる理由の一つでもある。 表皮効果は多くの科学者が研究し、ウィリアム・トムソン(ケルヴィン卿)によって1887年に説明された。導体の電流密度Jは 深さδに対して、次式のように減少する。 ここで d は表皮深さで、電流が 表面電流の1/e (約 0.37)になる深さであり次のように計算される。 ρ = 導体の電気抵抗率ω = 電流の角周波数 = 2π × 周波数μ = 導体の絶対透磁率 dの厚さの平板が直流電流に対して生じる抵抗と、厚さがdよりもっと厚い平板の交流電流に対する抵抗は同じである。交流電流に対して電線は直流電流に対する厚さdのパイプのような抵抗を示す。. 例として、円形断面の電線の抵抗は概略以下のようになる。 L = 導体の長さD = 導体の径 D >> dの場合に上の式は成り立つ。 (ja)
rdfs:label
  • 表皮効果 (ja)
  • 表皮効果 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of