現代原子価結合理論(げんだいげんしかけつごうりろん、英: Modern valence bond theory)は、原子価結合理論(VB法)の応用であり、ハートリー=フォック法や他の分子軌道に基づく手法のためのプログラムと精度と計算コストの点において競争力のあるコンピュータプログラムを使用する。分子軌道理論(MO法)やその後の密度汎関数理論(DFT法)はプログラムするのがより簡単であったためデジタルコンピュータの出現から量子化学を席巻した。そのため、初期の原子価結合法の人気は低下した。原子価結合法のプログラミングが改善されたのは1990年代後半以降のことである。 その最も単純な形式では、重ね合っている原子軌道は原子に基づく基底関数の線形結合として展開される軌道によって置き換えられる(原子軌道による線形結合; LCAO)。この展開は最低エネルギーを与えるよう最適化される。この手順はイオン性構造を含めることなくよいエネルギーを与える。 例えば、水素分子H2では、古典的原子価結合理論は2つの水素原子上の2つの1s原子軌道(aおよびb)を使い、共有結合性構造を構築する。 ΦC = (a(1)b(2) + b(1)a(2)) (α(1)β(2) - β(1)α(2)) イオン性構造は ΦI = (a(1)a(2) + b(1)b(2)) (α(1)β(2) - β(1)α(2)) と表わされる。

Property Value
dbo:abstract
  • 現代原子価結合理論(げんだいげんしかけつごうりろん、英: Modern valence bond theory)は、原子価結合理論(VB法)の応用であり、ハートリー=フォック法や他の分子軌道に基づく手法のためのプログラムと精度と計算コストの点において競争力のあるコンピュータプログラムを使用する。分子軌道理論(MO法)やその後の密度汎関数理論(DFT法)はプログラムするのがより簡単であったためデジタルコンピュータの出現から量子化学を席巻した。そのため、初期の原子価結合法の人気は低下した。原子価結合法のプログラミングが改善されたのは1990年代後半以降のことである。 その最も単純な形式では、重ね合っている原子軌道は原子に基づく基底関数の線形結合として展開される軌道によって置き換えられる(原子軌道による線形結合; LCAO)。この展開は最低エネルギーを与えるよう最適化される。この手順はイオン性構造を含めることなくよいエネルギーを与える。 例えば、水素分子H2では、古典的原子価結合理論は2つの水素原子上の2つの1s原子軌道(aおよびb)を使い、共有結合性構造を構築する。 ΦC = (a(1)b(2) + b(1)a(2)) (α(1)β(2) - β(1)α(2)) イオン性構造は ΦI = (a(1)a(2) + b(1)b(2)) (α(1)β(2) - β(1)α(2)) と表わされる。 最終的な波動関数はこれら2つの関数の線形結合である。とは完全に等価な関数が ΦCF = ((a+kb)(1)(b+ka)(2) + (b+ka)(1)(a+kb)(2)) (α(1)β(2) - β(1)α(2)) であると指摘した。この式を展開すると共有結合性構造とイオン性構造の線形結合が与えられる。現代原子価結合理論は2つの原子軌道の単純な線形結合をより大きな基底関数系における全ての軌道の線形結合で置き換える。得られた2つの原子価結合軌道は、他方の水素原子に向かってわずかに歪んだもう一方の水素原子上の原子軌道のように見える。そのため、原子価結合理論はこのコールソン=フィッシャー理論の拡張である。 (ja)
  • 現代原子価結合理論(げんだいげんしかけつごうりろん、英: Modern valence bond theory)は、原子価結合理論(VB法)の応用であり、ハートリー=フォック法や他の分子軌道に基づく手法のためのプログラムと精度と計算コストの点において競争力のあるコンピュータプログラムを使用する。分子軌道理論(MO法)やその後の密度汎関数理論(DFT法)はプログラムするのがより簡単であったためデジタルコンピュータの出現から量子化学を席巻した。そのため、初期の原子価結合法の人気は低下した。原子価結合法のプログラミングが改善されたのは1990年代後半以降のことである。 その最も単純な形式では、重ね合っている原子軌道は原子に基づく基底関数の線形結合として展開される軌道によって置き換えられる(原子軌道による線形結合; LCAO)。この展開は最低エネルギーを与えるよう最適化される。この手順はイオン性構造を含めることなくよいエネルギーを与える。 例えば、水素分子H2では、古典的原子価結合理論は2つの水素原子上の2つの1s原子軌道(aおよびb)を使い、共有結合性構造を構築する。 ΦC = (a(1)b(2) + b(1)a(2)) (α(1)β(2) - β(1)α(2)) イオン性構造は ΦI = (a(1)a(2) + b(1)b(2)) (α(1)β(2) - β(1)α(2)) と表わされる。 最終的な波動関数はこれら2つの関数の線形結合である。とは完全に等価な関数が ΦCF = ((a+kb)(1)(b+ka)(2) + (b+ka)(1)(a+kb)(2)) (α(1)β(2) - β(1)α(2)) であると指摘した。この式を展開すると共有結合性構造とイオン性構造の線形結合が与えられる。現代原子価結合理論は2つの原子軌道の単純な線形結合をより大きな基底関数系における全ての軌道の線形結合で置き換える。得られた2つの原子価結合軌道は、他方の水素原子に向かってわずかに歪んだもう一方の水素原子上の原子軌道のように見える。そのため、原子価結合理論はこのコールソン=フィッシャー理論の拡張である。 (ja)
dbo:wikiPageID
  • 4251529 (xsd:integer)
dbo:wikiPageLength
  • 5268 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 87519662 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 現代原子価結合理論(げんだいげんしかけつごうりろん、英: Modern valence bond theory)は、原子価結合理論(VB法)の応用であり、ハートリー=フォック法や他の分子軌道に基づく手法のためのプログラムと精度と計算コストの点において競争力のあるコンピュータプログラムを使用する。分子軌道理論(MO法)やその後の密度汎関数理論(DFT法)はプログラムするのがより簡単であったためデジタルコンピュータの出現から量子化学を席巻した。そのため、初期の原子価結合法の人気は低下した。原子価結合法のプログラミングが改善されたのは1990年代後半以降のことである。 その最も単純な形式では、重ね合っている原子軌道は原子に基づく基底関数の線形結合として展開される軌道によって置き換えられる(原子軌道による線形結合; LCAO)。この展開は最低エネルギーを与えるよう最適化される。この手順はイオン性構造を含めることなくよいエネルギーを与える。 例えば、水素分子H2では、古典的原子価結合理論は2つの水素原子上の2つの1s原子軌道(aおよびb)を使い、共有結合性構造を構築する。 ΦC = (a(1)b(2) + b(1)a(2)) (α(1)β(2) - β(1)α(2)) イオン性構造は ΦI = (a(1)a(2) + b(1)b(2)) (α(1)β(2) - β(1)α(2)) と表わされる。 (ja)
  • 現代原子価結合理論(げんだいげんしかけつごうりろん、英: Modern valence bond theory)は、原子価結合理論(VB法)の応用であり、ハートリー=フォック法や他の分子軌道に基づく手法のためのプログラムと精度と計算コストの点において競争力のあるコンピュータプログラムを使用する。分子軌道理論(MO法)やその後の密度汎関数理論(DFT法)はプログラムするのがより簡単であったためデジタルコンピュータの出現から量子化学を席巻した。そのため、初期の原子価結合法の人気は低下した。原子価結合法のプログラミングが改善されたのは1990年代後半以降のことである。 その最も単純な形式では、重ね合っている原子軌道は原子に基づく基底関数の線形結合として展開される軌道によって置き換えられる(原子軌道による線形結合; LCAO)。この展開は最低エネルギーを与えるよう最適化される。この手順はイオン性構造を含めることなくよいエネルギーを与える。 例えば、水素分子H2では、古典的原子価結合理論は2つの水素原子上の2つの1s原子軌道(aおよびb)を使い、共有結合性構造を構築する。 ΦC = (a(1)b(2) + b(1)a(2)) (α(1)β(2) - β(1)α(2)) イオン性構造は ΦI = (a(1)a(2) + b(1)b(2)) (α(1)β(2) - β(1)α(2)) と表わされる。 (ja)
rdfs:label
  • 現代原子価結合法 (ja)
  • 現代原子価結合法 (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of