天文学における減光(げんこう、extinction)とは、天体から放射された電磁波が、その進行する空間に存在する物質によって吸収や散乱を受けることで、観測者に到達する電磁波のエネルギー総量が減る現象、及びその減衰量を表す指標のことである。 減光の最も重要な要因は、星間物質によるものである。観測する天体によっては、銀河間物質や、天体を取り巻く星周物質、周銀河物質によっても生じる。また、観測者が地上にいる場合には、星間物質に加えて、地球の大気による天体からの電磁波の吸収・散乱の影響も重要となる。電磁波の波長によっては、大気中の分子による減光は非常に強く、ガンマ線、X線、紫外線、一部の波長の赤外線と電波は、地上からは観測できないが、宇宙望遠鏡などの特別な手段による観測では、全ての波長で高感度の観測ができる。 可視光から近赤外線の波長域では、波長が長い(つまり赤い)光ほど減光を受けにくいため、減光が大きいほど天体の色は赤く見える。このことから、減光は赤化とも呼ばれる。

Property Value
dbo:abstract
  • 天文学における減光(げんこう、extinction)とは、天体から放射された電磁波が、その進行する空間に存在する物質によって吸収や散乱を受けることで、観測者に到達する電磁波のエネルギー総量が減る現象、及びその減衰量を表す指標のことである。 減光の最も重要な要因は、星間物質によるものである。観測する天体によっては、銀河間物質や、天体を取り巻く星周物質、周銀河物質によっても生じる。また、観測者が地上にいる場合には、星間物質に加えて、地球の大気による天体からの電磁波の吸収・散乱の影響も重要となる。電磁波の波長によっては、大気中の分子による減光は非常に強く、ガンマ線、X線、紫外線、一部の波長の赤外線と電波は、地上からは観測できないが、宇宙望遠鏡などの特別な手段による観測では、全ての波長で高感度の観測ができる。 可視光から近赤外線の波長域では、波長が長い(つまり赤い)光ほど減光を受けにくいため、減光が大きいほど天体の色は赤く見える。このことから、減光は赤化とも呼ばれる。 (ja)
  • 天文学における減光(げんこう、extinction)とは、天体から放射された電磁波が、その進行する空間に存在する物質によって吸収や散乱を受けることで、観測者に到達する電磁波のエネルギー総量が減る現象、及びその減衰量を表す指標のことである。 減光の最も重要な要因は、星間物質によるものである。観測する天体によっては、銀河間物質や、天体を取り巻く星周物質、周銀河物質によっても生じる。また、観測者が地上にいる場合には、星間物質に加えて、地球の大気による天体からの電磁波の吸収・散乱の影響も重要となる。電磁波の波長によっては、大気中の分子による減光は非常に強く、ガンマ線、X線、紫外線、一部の波長の赤外線と電波は、地上からは観測できないが、宇宙望遠鏡などの特別な手段による観測では、全ての波長で高感度の観測ができる。 可視光から近赤外線の波長域では、波長が長い(つまり赤い)光ほど減光を受けにくいため、減光が大きいほど天体の色は赤く見える。このことから、減光は赤化とも呼ばれる。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3894031 (xsd:integer)
dbo:wikiPageLength
  • 23729 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 78685556 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:align
  • right (ja)
  • right (ja)
prop-ja:colwidth
  • 30 (xsd:integer)
prop-ja:footer
  • 暗黒星雲の画像にみられる星間赤化の効果。左の画像では、可視光(B、Vバンド)を青と緑、赤外線(Iバンド)を赤に、右の画像では可視光(Bバンド)を青、赤外線(I、Kバンド)を緑と赤に割り当てた疑似色で可視化したもので、波長が長い方が赤い色になるように処理されている。暗黒星雲の背後にある恒星は、長い波長の赤外線(Kバンド)でだけ見通せるので、赤くみえる。出典: ESO (ja)
  • 暗黒星雲の画像にみられる星間赤化の効果。左の画像では、可視光(B、Vバンド)を青と緑、赤外線(Iバンド)を赤に、右の画像では可視光(Bバンド)を青、赤外線(I、Kバンド)を緑と赤に割り当てた疑似色で可視化したもので、波長が長い方が赤い色になるように処理されている。暗黒星雲の背後にある恒星は、長い波長の赤外線(Kバンド)でだけ見通せるので、赤くみえる。出典: ESO (ja)
prop-ja:image
  • Barnard 68 - Eso0102b.jpg (ja)
  • Barnard 68 crop.jpg (ja)
  • Barnard 68 - Eso0102b.jpg (ja)
  • Barnard 68 crop.jpg (ja)
prop-ja:width
  • 180 (xsd:integer)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 天文学における減光(げんこう、extinction)とは、天体から放射された電磁波が、その進行する空間に存在する物質によって吸収や散乱を受けることで、観測者に到達する電磁波のエネルギー総量が減る現象、及びその減衰量を表す指標のことである。 減光の最も重要な要因は、星間物質によるものである。観測する天体によっては、銀河間物質や、天体を取り巻く星周物質、周銀河物質によっても生じる。また、観測者が地上にいる場合には、星間物質に加えて、地球の大気による天体からの電磁波の吸収・散乱の影響も重要となる。電磁波の波長によっては、大気中の分子による減光は非常に強く、ガンマ線、X線、紫外線、一部の波長の赤外線と電波は、地上からは観測できないが、宇宙望遠鏡などの特別な手段による観測では、全ての波長で高感度の観測ができる。 可視光から近赤外線の波長域では、波長が長い(つまり赤い)光ほど減光を受けにくいため、減光が大きいほど天体の色は赤く見える。このことから、減光は赤化とも呼ばれる。 (ja)
  • 天文学における減光(げんこう、extinction)とは、天体から放射された電磁波が、その進行する空間に存在する物質によって吸収や散乱を受けることで、観測者に到達する電磁波のエネルギー総量が減る現象、及びその減衰量を表す指標のことである。 減光の最も重要な要因は、星間物質によるものである。観測する天体によっては、銀河間物質や、天体を取り巻く星周物質、周銀河物質によっても生じる。また、観測者が地上にいる場合には、星間物質に加えて、地球の大気による天体からの電磁波の吸収・散乱の影響も重要となる。電磁波の波長によっては、大気中の分子による減光は非常に強く、ガンマ線、X線、紫外線、一部の波長の赤外線と電波は、地上からは観測できないが、宇宙望遠鏡などの特別な手段による観測では、全ての波長で高感度の観測ができる。 可視光から近赤外線の波長域では、波長が長い(つまり赤い)光ほど減光を受けにくいため、減光が大きいほど天体の色は赤く見える。このことから、減光は赤化とも呼ばれる。 (ja)
rdfs:label
  • 減光 (ja)
  • 減光 (ja)
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of