数学の多変数複素函数の理論において、擬凸集合(ぎとつしゅうごう、英: pseudoconvex set)は n 次元複素空間 Cn 内のある特殊なタイプの開集合である。擬凸集合が重要となるのは、それらが正則領域の分類に有用となるからである。 今 を領域、すなわち、開連結部分集合とする。G が擬凸(あるいは、ハルトークス擬凸)であるとは、すべての実数 x に対して が G の相対コンパクトな部分集合となるような、G 上のある連続多重劣調和函数 φ が存在することを言う。言い換えると、G が連続かつ多重劣調和なエグゾースチョン函数 (exhaustion function) を持つとき、その領域は擬凸である。 G が C2(二階連続的微分可能)級の境界を持つとき、この概念はより簡単に扱えるレヴィ擬凸性となる。より具体的に、C2 級の境界を持つ G には定義函数が存在することが示される。すなわち、G = {ρ < 0} および ∂G = {ρ = 0} を満たすような C2 級の ρ: Cn → R の存在が示される。今、G が擬凸であるための必要十分条件は、すべての p ∈ ∂G と、p での複素接空間内の w, すなわち を満たすような w に対して、 が成立することである。 G の境界が C2 級でないなら、次の近似的な結果が有用となる。 を満たすものが存在する。

Property Value
dbo:abstract
  • 数学の多変数複素函数の理論において、擬凸集合(ぎとつしゅうごう、英: pseudoconvex set)は n 次元複素空間 Cn 内のある特殊なタイプの開集合である。擬凸集合が重要となるのは、それらが正則領域の分類に有用となるからである。 今 を領域、すなわち、開連結部分集合とする。G が擬凸(あるいは、ハルトークス擬凸)であるとは、すべての実数 x に対して が G の相対コンパクトな部分集合となるような、G 上のある連続多重劣調和函数 φ が存在することを言う。言い換えると、G が連続かつ多重劣調和なエグゾースチョン函数 (exhaustion function) を持つとき、その領域は擬凸である。 G が C2(二階連続的微分可能)級の境界を持つとき、この概念はより簡単に扱えるレヴィ擬凸性となる。より具体的に、C2 級の境界を持つ G には定義函数が存在することが示される。すなわち、G = {ρ < 0} および ∂G = {ρ = 0} を満たすような C2 級の ρ: Cn → R の存在が示される。今、G が擬凸であるための必要十分条件は、すべての p ∈ ∂G と、p での複素接空間内の w, すなわち を満たすような w に対して、 が成立することである。 G の境界が C2 級でないなら、次の近似的な結果が有用となる。 命題1 G が擬凸であるなら、境界が C∞ 級(滑らか)で、G 内で相対コンパクトであるような有界強レヴィ擬凸領域 Gk ⊂ G で を満たすものが存在する。 この命題がなぜ成立するかと言うと、定義におけるような φ に対して、実際に C∞ エグゾースチョン函数 (exhaustion function) を得ることが出来るからである。 (ja)
  • 数学の多変数複素函数の理論において、擬凸集合(ぎとつしゅうごう、英: pseudoconvex set)は n 次元複素空間 Cn 内のある特殊なタイプの開集合である。擬凸集合が重要となるのは、それらが正則領域の分類に有用となるからである。 今 を領域、すなわち、開連結部分集合とする。G が擬凸(あるいは、ハルトークス擬凸)であるとは、すべての実数 x に対して が G の相対コンパクトな部分集合となるような、G 上のある連続多重劣調和函数 φ が存在することを言う。言い換えると、G が連続かつ多重劣調和なエグゾースチョン函数 (exhaustion function) を持つとき、その領域は擬凸である。 G が C2(二階連続的微分可能)級の境界を持つとき、この概念はより簡単に扱えるレヴィ擬凸性となる。より具体的に、C2 級の境界を持つ G には定義函数が存在することが示される。すなわち、G = {ρ < 0} および ∂G = {ρ = 0} を満たすような C2 級の ρ: Cn → R の存在が示される。今、G が擬凸であるための必要十分条件は、すべての p ∈ ∂G と、p での複素接空間内の w, すなわち を満たすような w に対して、 が成立することである。 G の境界が C2 級でないなら、次の近似的な結果が有用となる。 命題1 G が擬凸であるなら、境界が C∞ 級(滑らか)で、G 内で相対コンパクトであるような有界強レヴィ擬凸領域 Gk ⊂ G で を満たすものが存在する。 この命題がなぜ成立するかと言うと、定義におけるような φ に対して、実際に C∞ エグゾースチョン函数 (exhaustion function) を得ることが出来るからである。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3046364 (xsd:integer)
dbo:wikiPageLength
  • 2575 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 60502230 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の多変数複素函数の理論において、擬凸集合(ぎとつしゅうごう、英: pseudoconvex set)は n 次元複素空間 Cn 内のある特殊なタイプの開集合である。擬凸集合が重要となるのは、それらが正則領域の分類に有用となるからである。 今 を領域、すなわち、開連結部分集合とする。G が擬凸(あるいは、ハルトークス擬凸)であるとは、すべての実数 x に対して が G の相対コンパクトな部分集合となるような、G 上のある連続多重劣調和函数 φ が存在することを言う。言い換えると、G が連続かつ多重劣調和なエグゾースチョン函数 (exhaustion function) を持つとき、その領域は擬凸である。 G が C2(二階連続的微分可能)級の境界を持つとき、この概念はより簡単に扱えるレヴィ擬凸性となる。より具体的に、C2 級の境界を持つ G には定義函数が存在することが示される。すなわち、G = {ρ < 0} および ∂G = {ρ = 0} を満たすような C2 級の ρ: Cn → R の存在が示される。今、G が擬凸であるための必要十分条件は、すべての p ∈ ∂G と、p での複素接空間内の w, すなわち を満たすような w に対して、 が成立することである。 G の境界が C2 級でないなら、次の近似的な結果が有用となる。 を満たすものが存在する。 (ja)
  • 数学の多変数複素函数の理論において、擬凸集合(ぎとつしゅうごう、英: pseudoconvex set)は n 次元複素空間 Cn 内のある特殊なタイプの開集合である。擬凸集合が重要となるのは、それらが正則領域の分類に有用となるからである。 今 を領域、すなわち、開連結部分集合とする。G が擬凸(あるいは、ハルトークス擬凸)であるとは、すべての実数 x に対して が G の相対コンパクトな部分集合となるような、G 上のある連続多重劣調和函数 φ が存在することを言う。言い換えると、G が連続かつ多重劣調和なエグゾースチョン函数 (exhaustion function) を持つとき、その領域は擬凸である。 G が C2(二階連続的微分可能)級の境界を持つとき、この概念はより簡単に扱えるレヴィ擬凸性となる。より具体的に、C2 級の境界を持つ G には定義函数が存在することが示される。すなわち、G = {ρ < 0} および ∂G = {ρ = 0} を満たすような C2 級の ρ: Cn → R の存在が示される。今、G が擬凸であるための必要十分条件は、すべての p ∈ ∂G と、p での複素接空間内の w, すなわち を満たすような w に対して、 が成立することである。 G の境界が C2 級でないなら、次の近似的な結果が有用となる。 を満たすものが存在する。 (ja)
rdfs:label
  • 擬凸性 (ja)
  • 擬凸性 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of