数学の位相空間論関連分野における列型空間(れつけいくうかん、れつがたくうかん、英: sequential space; 列状空間、列性空間)とは、開集合と閉集合が点列の収束で特長づけられる位相空間のことである。この空間上で定義された関数の連続性もまた、点列の収束性で特長づけられる。しかし列型空間であっても閉包の概念は点列の収束で特長づけられるとは限らず、これが可能な列型空間をフレシェ・ウリゾーン空間という。 位相空間が列型空間である必要十分条件はその空間が第一可算公理を満たす空間の商空間となることである。 空間にこうした可算性に関する条件が必要となるのは点列の概念がそもそも可算な全順序列として定義されているからであり、点列から可算性と全順序性の束縛を外した概念である有向点族の概念を用いれば空間に仮定を置くことなく収束で位相構造を特長づけられる。 任意の列型空間はを持つ。

Property Value
dbo:abstract
  • 数学の位相空間論関連分野における列型空間(れつけいくうかん、れつがたくうかん、英: sequential space; 列状空間、列性空間)とは、開集合と閉集合が点列の収束で特長づけられる位相空間のことである。この空間上で定義された関数の連続性もまた、点列の収束性で特長づけられる。しかし列型空間であっても閉包の概念は点列の収束で特長づけられるとは限らず、これが可能な列型空間をフレシェ・ウリゾーン空間という。 位相空間が列型空間である必要十分条件はその空間が第一可算公理を満たす空間の商空間となることである。 空間にこうした可算性に関する条件が必要となるのは点列の概念がそもそも可算な全順序列として定義されているからであり、点列から可算性と全順序性の束縛を外した概念である有向点族の概念を用いれば空間に仮定を置くことなく収束で位相構造を特長づけられる。 任意の列型空間はを持つ。 (ja)
  • 数学の位相空間論関連分野における列型空間(れつけいくうかん、れつがたくうかん、英: sequential space; 列状空間、列性空間)とは、開集合と閉集合が点列の収束で特長づけられる位相空間のことである。この空間上で定義された関数の連続性もまた、点列の収束性で特長づけられる。しかし列型空間であっても閉包の概念は点列の収束で特長づけられるとは限らず、これが可能な列型空間をフレシェ・ウリゾーン空間という。 位相空間が列型空間である必要十分条件はその空間が第一可算公理を満たす空間の商空間となることである。 空間にこうした可算性に関する条件が必要となるのは点列の概念がそもそも可算な全順序列として定義されているからであり、点列から可算性と全順序性の束縛を外した概念である有向点族の概念を用いれば空間に仮定を置くことなく収束で位相構造を特長づけられる。 任意の列型空間はを持つ。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2609813 (xsd:integer)
dbo:wikiPageLength
  • 5105 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 54583080 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の位相空間論関連分野における列型空間(れつけいくうかん、れつがたくうかん、英: sequential space; 列状空間、列性空間)とは、開集合と閉集合が点列の収束で特長づけられる位相空間のことである。この空間上で定義された関数の連続性もまた、点列の収束性で特長づけられる。しかし列型空間であっても閉包の概念は点列の収束で特長づけられるとは限らず、これが可能な列型空間をフレシェ・ウリゾーン空間という。 位相空間が列型空間である必要十分条件はその空間が第一可算公理を満たす空間の商空間となることである。 空間にこうした可算性に関する条件が必要となるのは点列の概念がそもそも可算な全順序列として定義されているからであり、点列から可算性と全順序性の束縛を外した概念である有向点族の概念を用いれば空間に仮定を置くことなく収束で位相構造を特長づけられる。 任意の列型空間はを持つ。 (ja)
  • 数学の位相空間論関連分野における列型空間(れつけいくうかん、れつがたくうかん、英: sequential space; 列状空間、列性空間)とは、開集合と閉集合が点列の収束で特長づけられる位相空間のことである。この空間上で定義された関数の連続性もまた、点列の収束性で特長づけられる。しかし列型空間であっても閉包の概念は点列の収束で特長づけられるとは限らず、これが可能な列型空間をフレシェ・ウリゾーン空間という。 位相空間が列型空間である必要十分条件はその空間が第一可算公理を満たす空間の商空間となることである。 空間にこうした可算性に関する条件が必要となるのは点列の概念がそもそも可算な全順序列として定義されているからであり、点列から可算性と全順序性の束縛を外した概念である有向点族の概念を用いれば空間に仮定を置くことなく収束で位相構造を特長づけられる。 任意の列型空間はを持つ。 (ja)
rdfs:label
  • 列型空間 (ja)
  • 列型空間 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of