数学におけるフェイェールの定理(フェイェールのていり、英: Fejér's theorem)とは、ハンガリーの数学者リポート・フェイェールの名にちなむ定理。f:R → C が周期 2π の連続函数であるなら、そのフーリエ級数の部分和の列 (sn) のチェザロ平均の列 (σn) は、[-π,π] 上一様に f に収束する。 (sn) を具体的に書くと、 となる。ただし である。また (σn) は であり、Fn は第 n 次のフェイェール核を表す。 より一般的な形式において、この定理は必ずしも連続でない函数に対しても応用されている 。f は L1(-π,π) に属するものと仮定する。f(x) の x0 における左極限および右極限 f(x0±0) が存在するか、いずれの極限も同符号の無限大であるなら、次が成り立つ: チェザロ平均の存在あるいは無限大への発散も、この関係式は意味している。マルツェル・リースのある定理によると、フェイエールの定理は (C, 1) 平均 σn がフーリエ級数の (C, α) 平均 に変えられても、同様に成立する。

Property Value
dbo:abstract
  • 数学におけるフェイェールの定理(フェイェールのていり、英: Fejér's theorem)とは、ハンガリーの数学者リポート・フェイェールの名にちなむ定理。f:R → C が周期 2π の連続函数であるなら、そのフーリエ級数の部分和の列 (sn) のチェザロ平均の列 (σn) は、[-π,π] 上一様に f に収束する。 (sn) を具体的に書くと、 となる。ただし である。また (σn) は であり、Fn は第 n 次のフェイェール核を表す。 より一般的な形式において、この定理は必ずしも連続でない函数に対しても応用されている 。f は L1(-π,π) に属するものと仮定する。f(x) の x0 における左極限および右極限 f(x0±0) が存在するか、いずれの極限も同符号の無限大であるなら、次が成り立つ: チェザロ平均の存在あるいは無限大への発散も、この関係式は意味している。マルツェル・リースのある定理によると、フェイエールの定理は (C, 1) 平均 σn がフーリエ級数の (C, α) 平均 に変えられても、同様に成立する。 (ja)
  • 数学におけるフェイェールの定理(フェイェールのていり、英: Fejér's theorem)とは、ハンガリーの数学者リポート・フェイェールの名にちなむ定理。f:R → C が周期 2π の連続函数であるなら、そのフーリエ級数の部分和の列 (sn) のチェザロ平均の列 (σn) は、[-π,π] 上一様に f に収束する。 (sn) を具体的に書くと、 となる。ただし である。また (σn) は であり、Fn は第 n 次のフェイェール核を表す。 より一般的な形式において、この定理は必ずしも連続でない函数に対しても応用されている 。f は L1(-π,π) に属するものと仮定する。f(x) の x0 における左極限および右極限 f(x0±0) が存在するか、いずれの極限も同符号の無限大であるなら、次が成り立つ: チェザロ平均の存在あるいは無限大への発散も、この関係式は意味している。マルツェル・リースのある定理によると、フェイエールの定理は (C, 1) 平均 σn がフーリエ級数の (C, α) 平均 に変えられても、同様に成立する。 (ja)
dbo:wikiPageID
  • 3015810 (xsd:integer)
dbo:wikiPageLength
  • 1450 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91227489 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学におけるフェイェールの定理(フェイェールのていり、英: Fejér's theorem)とは、ハンガリーの数学者リポート・フェイェールの名にちなむ定理。f:R → C が周期 2π の連続函数であるなら、そのフーリエ級数の部分和の列 (sn) のチェザロ平均の列 (σn) は、[-π,π] 上一様に f に収束する。 (sn) を具体的に書くと、 となる。ただし である。また (σn) は であり、Fn は第 n 次のフェイェール核を表す。 より一般的な形式において、この定理は必ずしも連続でない函数に対しても応用されている 。f は L1(-π,π) に属するものと仮定する。f(x) の x0 における左極限および右極限 f(x0±0) が存在するか、いずれの極限も同符号の無限大であるなら、次が成り立つ: チェザロ平均の存在あるいは無限大への発散も、この関係式は意味している。マルツェル・リースのある定理によると、フェイエールの定理は (C, 1) 平均 σn がフーリエ級数の (C, α) 平均 に変えられても、同様に成立する。 (ja)
  • 数学におけるフェイェールの定理(フェイェールのていり、英: Fejér's theorem)とは、ハンガリーの数学者リポート・フェイェールの名にちなむ定理。f:R → C が周期 2π の連続函数であるなら、そのフーリエ級数の部分和の列 (sn) のチェザロ平均の列 (σn) は、[-π,π] 上一様に f に収束する。 (sn) を具体的に書くと、 となる。ただし である。また (σn) は であり、Fn は第 n 次のフェイェール核を表す。 より一般的な形式において、この定理は必ずしも連続でない函数に対しても応用されている 。f は L1(-π,π) に属するものと仮定する。f(x) の x0 における左極限および右極限 f(x0±0) が存在するか、いずれの極限も同符号の無限大であるなら、次が成り立つ: チェザロ平均の存在あるいは無限大への発散も、この関係式は意味している。マルツェル・リースのある定理によると、フェイエールの定理は (C, 1) 平均 σn がフーリエ級数の (C, α) 平均 に変えられても、同様に成立する。 (ja)
rdfs:label
  • フェイェールの定理 (ja)
  • フェイェールの定理 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of