ニオブスズ (Niobium-Tin、Nb-Sn) はニオブ (Nb) とスズ (Sn) の金属間化合物で、工業的には第二種超伝導体として超伝導線に使用されている。ニオブとスズはさまざまな割合で化合物を作るが、超伝導を示すのは Nb3Sn である。ニオブチタン合金 (NbTi) よりも高価で加工性も悪いが臨界磁場は30テスラと高く、約15テスラに留まるニオブチタン合金よりも強力な超伝導磁石を作ることができる。 ニオブスズが超伝導を示すことは1954年に発見された。1961年に臨界電流密度と臨界磁場のいずれも極めて高いことが見出だされ、超伝導の大規模応用の道が拓かれた。 転移温度は18.3ケルビンだが、通常は液体ヘリウムの沸点である4.2ケルビンで運用される。 2008年4月には、動作温度4.2ケルビンで発生磁場12テスラのとき電流密度2,643アンペア毎平方ミリメートルを達成したとされる。

Property Value
dbo:abstract
  • ニオブスズ (Niobium-Tin、Nb-Sn) はニオブ (Nb) とスズ (Sn) の金属間化合物で、工業的には第二種超伝導体として超伝導線に使用されている。ニオブとスズはさまざまな割合で化合物を作るが、超伝導を示すのは Nb3Sn である。ニオブチタン合金 (NbTi) よりも高価で加工性も悪いが臨界磁場は30テスラと高く、約15テスラに留まるニオブチタン合金よりも強力な超伝導磁石を作ることができる。 ニオブスズが超伝導を示すことは1954年に発見された。1961年に臨界電流密度と臨界磁場のいずれも極めて高いことが見出だされ、超伝導の大規模応用の道が拓かれた。 転移温度は18.3ケルビンだが、通常は液体ヘリウムの沸点である4.2ケルビンで運用される。 2008年4月には、動作温度4.2ケルビンで発生磁場12テスラのとき電流密度2,643アンペア毎平方ミリメートルを達成したとされる。 (ja)
  • ニオブスズ (Niobium-Tin、Nb-Sn) はニオブ (Nb) とスズ (Sn) の金属間化合物で、工業的には第二種超伝導体として超伝導線に使用されている。ニオブとスズはさまざまな割合で化合物を作るが、超伝導を示すのは Nb3Sn である。ニオブチタン合金 (NbTi) よりも高価で加工性も悪いが臨界磁場は30テスラと高く、約15テスラに留まるニオブチタン合金よりも強力な超伝導磁石を作ることができる。 ニオブスズが超伝導を示すことは1954年に発見された。1961年に臨界電流密度と臨界磁場のいずれも極めて高いことが見出だされ、超伝導の大規模応用の道が拓かれた。 転移温度は18.3ケルビンだが、通常は液体ヘリウムの沸点である4.2ケルビンで運用される。 2008年4月には、動作温度4.2ケルビンで発生磁場12テスラのとき電流密度2,643アンペア毎平方ミリメートルを達成したとされる。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 4101184 (xsd:integer)
dbo:wikiPageLength
  • 5696 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 76683008 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • ニオブスズ (Niobium-Tin、Nb-Sn) はニオブ (Nb) とスズ (Sn) の金属間化合物で、工業的には第二種超伝導体として超伝導線に使用されている。ニオブとスズはさまざまな割合で化合物を作るが、超伝導を示すのは Nb3Sn である。ニオブチタン合金 (NbTi) よりも高価で加工性も悪いが臨界磁場は30テスラと高く、約15テスラに留まるニオブチタン合金よりも強力な超伝導磁石を作ることができる。 ニオブスズが超伝導を示すことは1954年に発見された。1961年に臨界電流密度と臨界磁場のいずれも極めて高いことが見出だされ、超伝導の大規模応用の道が拓かれた。 転移温度は18.3ケルビンだが、通常は液体ヘリウムの沸点である4.2ケルビンで運用される。 2008年4月には、動作温度4.2ケルビンで発生磁場12テスラのとき電流密度2,643アンペア毎平方ミリメートルを達成したとされる。 (ja)
  • ニオブスズ (Niobium-Tin、Nb-Sn) はニオブ (Nb) とスズ (Sn) の金属間化合物で、工業的には第二種超伝導体として超伝導線に使用されている。ニオブとスズはさまざまな割合で化合物を作るが、超伝導を示すのは Nb3Sn である。ニオブチタン合金 (NbTi) よりも高価で加工性も悪いが臨界磁場は30テスラと高く、約15テスラに留まるニオブチタン合金よりも強力な超伝導磁石を作ることができる。 ニオブスズが超伝導を示すことは1954年に発見された。1961年に臨界電流密度と臨界磁場のいずれも極めて高いことが見出だされ、超伝導の大規模応用の道が拓かれた。 転移温度は18.3ケルビンだが、通常は液体ヘリウムの沸点である4.2ケルビンで運用される。 2008年4月には、動作温度4.2ケルビンで発生磁場12テスラのとき電流密度2,643アンペア毎平方ミリメートルを達成したとされる。 (ja)
rdfs:label
  • ニオブスズ (ja)
  • ニオブスズ (ja)
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of