数学の、特に力学系理論として知られる解析学の分野において、n-次元トーラス 上の線型フロー(せんけいフロー、英: linear flow)とは、標準的な角度座標 (θ1, θ2, ..., θn) に関する次の微分方程式によって表現されるフローのことを言う: この方程式の解は次の様に陽的に表現される: トーラスを Rn/Zn と表すなら、始点はフローによって ω=(ω1, ω2, ..., ωn) の方向に一定速度で移動されることが分かる。またそのフローがユニタリ n-立方体の境界に到達した場合は、その反対側の面に移動される。 トーラス上の線型フローに対して、すべての軌道は周期的であるか、n-次元トーラスの部分集合で k-次元トーラスであるようなものの上で稠密である。ω の成分が有理独立であるなら、すべての軌道は全空間で稠密である。これは二次元の場合には簡単に分かる:すなわち、ω の二つの成分が有理独立であるなら、単位正方形の辺上でのフローのポアンカレ切断面は、円上の無理回転であり、したがってその軌道は円上で稠密で、結果としてトーラス上で稠密となる。

Property Value
dbo:abstract
  • 数学の、特に力学系理論として知られる解析学の分野において、n-次元トーラス 上の線型フロー(せんけいフロー、英: linear flow)とは、標準的な角度座標 (θ1, θ2, ..., θn) に関する次の微分方程式によって表現されるフローのことを言う: この方程式の解は次の様に陽的に表現される: トーラスを Rn/Zn と表すなら、始点はフローによって ω=(ω1, ω2, ..., ωn) の方向に一定速度で移動されることが分かる。またそのフローがユニタリ n-立方体の境界に到達した場合は、その反対側の面に移動される。 トーラス上の線型フローに対して、すべての軌道は周期的であるか、n-次元トーラスの部分集合で k-次元トーラスであるようなものの上で稠密である。ω の成分が有理独立であるなら、すべての軌道は全空間で稠密である。これは二次元の場合には簡単に分かる:すなわち、ω の二つの成分が有理独立であるなら、単位正方形の辺上でのフローのポアンカレ切断面は、円上の無理回転であり、したがってその軌道は円上で稠密で、結果としてトーラス上で稠密となる。 (ja)
  • 数学の、特に力学系理論として知られる解析学の分野において、n-次元トーラス 上の線型フロー(せんけいフロー、英: linear flow)とは、標準的な角度座標 (θ1, θ2, ..., θn) に関する次の微分方程式によって表現されるフローのことを言う: この方程式の解は次の様に陽的に表現される: トーラスを Rn/Zn と表すなら、始点はフローによって ω=(ω1, ω2, ..., ωn) の方向に一定速度で移動されることが分かる。またそのフローがユニタリ n-立方体の境界に到達した場合は、その反対側の面に移動される。 トーラス上の線型フローに対して、すべての軌道は周期的であるか、n-次元トーラスの部分集合で k-次元トーラスであるようなものの上で稠密である。ω の成分が有理独立であるなら、すべての軌道は全空間で稠密である。これは二次元の場合には簡単に分かる:すなわち、ω の二つの成分が有理独立であるなら、単位正方形の辺上でのフローのポアンカレ切断面は、円上の無理回転であり、したがってその軌道は円上で稠密で、結果としてトーラス上で稠密となる。 (ja)
dbo:wikiPageID
  • 3113726 (xsd:integer)
dbo:wikiPageLength
  • 1491 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 54670215 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の、特に力学系理論として知られる解析学の分野において、n-次元トーラス 上の線型フロー(せんけいフロー、英: linear flow)とは、標準的な角度座標 (θ1, θ2, ..., θn) に関する次の微分方程式によって表現されるフローのことを言う: この方程式の解は次の様に陽的に表現される: トーラスを Rn/Zn と表すなら、始点はフローによって ω=(ω1, ω2, ..., ωn) の方向に一定速度で移動されることが分かる。またそのフローがユニタリ n-立方体の境界に到達した場合は、その反対側の面に移動される。 トーラス上の線型フローに対して、すべての軌道は周期的であるか、n-次元トーラスの部分集合で k-次元トーラスであるようなものの上で稠密である。ω の成分が有理独立であるなら、すべての軌道は全空間で稠密である。これは二次元の場合には簡単に分かる:すなわち、ω の二つの成分が有理独立であるなら、単位正方形の辺上でのフローのポアンカレ切断面は、円上の無理回転であり、したがってその軌道は円上で稠密で、結果としてトーラス上で稠密となる。 (ja)
  • 数学の、特に力学系理論として知られる解析学の分野において、n-次元トーラス 上の線型フロー(せんけいフロー、英: linear flow)とは、標準的な角度座標 (θ1, θ2, ..., θn) に関する次の微分方程式によって表現されるフローのことを言う: この方程式の解は次の様に陽的に表現される: トーラスを Rn/Zn と表すなら、始点はフローによって ω=(ω1, ω2, ..., ωn) の方向に一定速度で移動されることが分かる。またそのフローがユニタリ n-立方体の境界に到達した場合は、その反対側の面に移動される。 トーラス上の線型フローに対して、すべての軌道は周期的であるか、n-次元トーラスの部分集合で k-次元トーラスであるようなものの上で稠密である。ω の成分が有理独立であるなら、すべての軌道は全空間で稠密である。これは二次元の場合には簡単に分かる:すなわち、ω の二つの成分が有理独立であるなら、単位正方形の辺上でのフローのポアンカレ切断面は、円上の無理回転であり、したがってその軌道は円上で稠密で、結果としてトーラス上で稠密となる。 (ja)
rdfs:label
  • トーラス上の線型フロー (ja)
  • トーラス上の線型フロー (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of