数学の複素解析の分野において、コーシー・リーマンの方程式(英: Cauchy–Riemann equations)は、2つの偏微分方程式からなる方程式系であり、連続性と微分可能性と合わせて、複素関数が複素微分可能すなわち正則であるための必要十分条件をなす。コーシー・リーマンの関係式とも呼ばれる。オーギュスタン=ルイ・コーシーおよびベルンハルト・リーマンの両者にちなんで名付けられた。この方程式系に最初に言及したのはジャン・ル・ロン・ダランベールの著作である。後に、レオンハルト・オイラーはこの方程式系を解析関数と結びつけた。コーシーはさらにコーシー・リーマンの方程式を彼の関数論を構築するために用いた。関数論に関するリーマンの論文は1851年に発表された。 実2変数の実数値関数の対 u(x, y), v(x, y) に関するコーシー・リーマンの方程式は次の2つの方程式である。 実際の用法としては、ある関数 f(z) が微分不可能であることを、コーシー・リーマンの方程式が成り立たないことから示すことが多い。

Property Value
dbo:abstract
  • 数学の複素解析の分野において、コーシー・リーマンの方程式(英: Cauchy–Riemann equations)は、2つの偏微分方程式からなる方程式系であり、連続性と微分可能性と合わせて、複素関数が複素微分可能すなわち正則であるための必要十分条件をなす。コーシー・リーマンの関係式とも呼ばれる。オーギュスタン=ルイ・コーシーおよびベルンハルト・リーマンの両者にちなんで名付けられた。この方程式系に最初に言及したのはジャン・ル・ロン・ダランベールの著作である。後に、レオンハルト・オイラーはこの方程式系を解析関数と結びつけた。コーシーはさらにコーシー・リーマンの方程式を彼の関数論を構築するために用いた。関数論に関するリーマンの論文は1851年に発表された。 実2変数の実数値関数の対 u(x, y), v(x, y) に関するコーシー・リーマンの方程式は次の2つの方程式である。 通常、u と v は複素1変数 z = x + iy の複素数値関数のそれぞれ実部と虚部が取られる: f(x + iy) = u(x,y) + iv(x,y)。u と v は、R2 から R への関数と考えて、複素平面 C の開部分集合の一点において実微分可能であると仮定する。これは u と v の偏微分が存在し、f の小さい変分を線型に近似できることを意味する(偏導関数は連続とは限らない)。すると f = u + iv がその点で複素微分可能であることと u と v の偏微分がその点においてコーシー・リーマンの方程式 (1a), (1b) を満たすことが同値となる。コーシー・リーマンの方程式を満たす偏微分の存在だけではその点で複素微分可能とはいえない。u と v が実微分可能であることが必要であり、これは偏導関数の存在よりも強い条件であるが、これらの偏導関数が連続である必要はない。 正則性は複素関数が C の開連結部分集合(これは C の領域と呼ばれる)のすべての点において微分可能であるという性質である。したがって、複素関数 f で、実部 u と虚部 v が実微分可能なものが正則であるための必要十分条件は、方程式 (1a), (1b) が扱っている領域の全体で満たされることである。正則関数は解析的であり、また逆も成り立つ。つまり、複素解析において、領域全体で複素微分可能(正則)な関数は解析関数と同じものである。これは実微分可能な関数に対しては成り立たない。 実際の用法としては、ある関数 f(z) が微分不可能であることを、コーシー・リーマンの方程式が成り立たないことから示すことが多い。 (ja)
  • 数学の複素解析の分野において、コーシー・リーマンの方程式(英: Cauchy–Riemann equations)は、2つの偏微分方程式からなる方程式系であり、連続性と微分可能性と合わせて、複素関数が複素微分可能すなわち正則であるための必要十分条件をなす。コーシー・リーマンの関係式とも呼ばれる。オーギュスタン=ルイ・コーシーおよびベルンハルト・リーマンの両者にちなんで名付けられた。この方程式系に最初に言及したのはジャン・ル・ロン・ダランベールの著作である。後に、レオンハルト・オイラーはこの方程式系を解析関数と結びつけた。コーシーはさらにコーシー・リーマンの方程式を彼の関数論を構築するために用いた。関数論に関するリーマンの論文は1851年に発表された。 実2変数の実数値関数の対 u(x, y), v(x, y) に関するコーシー・リーマンの方程式は次の2つの方程式である。 通常、u と v は複素1変数 z = x + iy の複素数値関数のそれぞれ実部と虚部が取られる: f(x + iy) = u(x,y) + iv(x,y)。u と v は、R2 から R への関数と考えて、複素平面 C の開部分集合の一点において実微分可能であると仮定する。これは u と v の偏微分が存在し、f の小さい変分を線型に近似できることを意味する(偏導関数は連続とは限らない)。すると f = u + iv がその点で複素微分可能であることと u と v の偏微分がその点においてコーシー・リーマンの方程式 (1a), (1b) を満たすことが同値となる。コーシー・リーマンの方程式を満たす偏微分の存在だけではその点で複素微分可能とはいえない。u と v が実微分可能であることが必要であり、これは偏導関数の存在よりも強い条件であるが、これらの偏導関数が連続である必要はない。 正則性は複素関数が C の開連結部分集合(これは C の領域と呼ばれる)のすべての点において微分可能であるという性質である。したがって、複素関数 f で、実部 u と虚部 v が実微分可能なものが正則であるための必要十分条件は、方程式 (1a), (1b) が扱っている領域の全体で満たされることである。正則関数は解析的であり、また逆も成り立つ。つまり、複素解析において、領域全体で複素微分可能(正則)な関数は解析関数と同じものである。これは実微分可能な関数に対しては成り立たない。 実際の用法としては、ある関数 f(z) が微分不可能であることを、コーシー・リーマンの方程式が成り立たないことから示すことが多い。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 658086 (xsd:integer)
dbo:wikiPageLength
  • 12069 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91213420 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:first
  • E.D. (ja)
  • E.D. (ja)
prop-ja:last
  • Solomentsev (ja)
  • Solomentsev (ja)
prop-ja:title
  • Cauchy–Riemann Equations (ja)
  • Cauchy–Riemann conditions (ja)
  • Cauchy–Riemann Equations (ja)
  • Cauchy–Riemann conditions (ja)
prop-ja:urlname
  • Cauchy-RiemannEquations (ja)
  • Cauchy–Riemann_conditions (ja)
  • Cauchy-RiemannEquations (ja)
  • Cauchy–Riemann_conditions (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の複素解析の分野において、コーシー・リーマンの方程式(英: Cauchy–Riemann equations)は、2つの偏微分方程式からなる方程式系であり、連続性と微分可能性と合わせて、複素関数が複素微分可能すなわち正則であるための必要十分条件をなす。コーシー・リーマンの関係式とも呼ばれる。オーギュスタン=ルイ・コーシーおよびベルンハルト・リーマンの両者にちなんで名付けられた。この方程式系に最初に言及したのはジャン・ル・ロン・ダランベールの著作である。後に、レオンハルト・オイラーはこの方程式系を解析関数と結びつけた。コーシーはさらにコーシー・リーマンの方程式を彼の関数論を構築するために用いた。関数論に関するリーマンの論文は1851年に発表された。 実2変数の実数値関数の対 u(x, y), v(x, y) に関するコーシー・リーマンの方程式は次の2つの方程式である。 実際の用法としては、ある関数 f(z) が微分不可能であることを、コーシー・リーマンの方程式が成り立たないことから示すことが多い。 (ja)
  • 数学の複素解析の分野において、コーシー・リーマンの方程式(英: Cauchy–Riemann equations)は、2つの偏微分方程式からなる方程式系であり、連続性と微分可能性と合わせて、複素関数が複素微分可能すなわち正則であるための必要十分条件をなす。コーシー・リーマンの関係式とも呼ばれる。オーギュスタン=ルイ・コーシーおよびベルンハルト・リーマンの両者にちなんで名付けられた。この方程式系に最初に言及したのはジャン・ル・ロン・ダランベールの著作である。後に、レオンハルト・オイラーはこの方程式系を解析関数と結びつけた。コーシーはさらにコーシー・リーマンの方程式を彼の関数論を構築するために用いた。関数論に関するリーマンの論文は1851年に発表された。 実2変数の実数値関数の対 u(x, y), v(x, y) に関するコーシー・リーマンの方程式は次の2つの方程式である。 実際の用法としては、ある関数 f(z) が微分不可能であることを、コーシー・リーマンの方程式が成り立たないことから示すことが多い。 (ja)
rdfs:label
  • コーシー・リーマンの方程式 (ja)
  • コーシー・リーマンの方程式 (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of