数学では、アーベル曲面 (abelian surface) とは、(複素)次元が 2 であるアーベル多様体を言う。 1次元の複素トーラスは、まさに楕円曲線であり、すべて代数的であるが、リーマンは、次元が 2 であるほとんどの複素トーラスは代数的でないことを発見した。代数的なトーラスのことをアーベル曲面と言い、それらはちょうど2次元のアーベル多様体である。その理論の大半は、高次元のトーラスやアーベル多様体の理論の特別な場合である。(同種を除いて)曲面が 2つの楕円曲線の積となる条件は、19世紀に盛んに研究された。 不変量: 多重種数(plurigenera)がみな 1 である。アーベル曲面は、S1×S1×S1×S1 に微分同相であるので、基本群は Z4 である。 ホッジダイアモンド:     1   2   2 1   4   1   2   2     1 例: 2つの楕円曲線の積。種数 2 の曲線のヤコビ多様体。

Property Value
dbo:abstract
  • 数学では、アーベル曲面 (abelian surface) とは、(複素)次元が 2 であるアーベル多様体を言う。 1次元の複素トーラスは、まさに楕円曲線であり、すべて代数的であるが、リーマンは、次元が 2 であるほとんどの複素トーラスは代数的でないことを発見した。代数的なトーラスのことをアーベル曲面と言い、それらはちょうど2次元のアーベル多様体である。その理論の大半は、高次元のトーラスやアーベル多様体の理論の特別な場合である。(同種を除いて)曲面が 2つの楕円曲線の積となる条件は、19世紀に盛んに研究された。 不変量: 多重種数(plurigenera)がみな 1 である。アーベル曲面は、S1×S1×S1×S1 に微分同相であるので、基本群は Z4 である。 ホッジダイアモンド:     1   2   2 1   4   1   2   2     1 例: 2つの楕円曲線の積。種数 2 の曲線のヤコビ多様体。 (ja)
  • 数学では、アーベル曲面 (abelian surface) とは、(複素)次元が 2 であるアーベル多様体を言う。 1次元の複素トーラスは、まさに楕円曲線であり、すべて代数的であるが、リーマンは、次元が 2 であるほとんどの複素トーラスは代数的でないことを発見した。代数的なトーラスのことをアーベル曲面と言い、それらはちょうど2次元のアーベル多様体である。その理論の大半は、高次元のトーラスやアーベル多様体の理論の特別な場合である。(同種を除いて)曲面が 2つの楕円曲線の積となる条件は、19世紀に盛んに研究された。 不変量: 多重種数(plurigenera)がみな 1 である。アーベル曲面は、S1×S1×S1×S1 に微分同相であるので、基本群は Z4 である。 ホッジダイアモンド:     1   2   2 1   4   1   2   2     1 例: 2つの楕円曲線の積。種数 2 の曲線のヤコビ多様体。 (ja)
dbo:wikiPageID
  • 2974953 (xsd:integer)
dbo:wikiPageLength
  • 2446 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 86003835 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:first
  • Ch. (ja)
  • Ch. (ja)
prop-ja:last
  • Birkenhake (ja)
  • Birkenhake (ja)
prop-ja:title
  • Abelian surface (ja)
  • Abelian surface (ja)
prop-ja:urlname
  • Abelian_surface (ja)
  • Abelian_surface (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学では、アーベル曲面 (abelian surface) とは、(複素)次元が 2 であるアーベル多様体を言う。 1次元の複素トーラスは、まさに楕円曲線であり、すべて代数的であるが、リーマンは、次元が 2 であるほとんどの複素トーラスは代数的でないことを発見した。代数的なトーラスのことをアーベル曲面と言い、それらはちょうど2次元のアーベル多様体である。その理論の大半は、高次元のトーラスやアーベル多様体の理論の特別な場合である。(同種を除いて)曲面が 2つの楕円曲線の積となる条件は、19世紀に盛んに研究された。 不変量: 多重種数(plurigenera)がみな 1 である。アーベル曲面は、S1×S1×S1×S1 に微分同相であるので、基本群は Z4 である。 ホッジダイアモンド:     1   2   2 1   4   1   2   2     1 例: 2つの楕円曲線の積。種数 2 の曲線のヤコビ多様体。 (ja)
  • 数学では、アーベル曲面 (abelian surface) とは、(複素)次元が 2 であるアーベル多様体を言う。 1次元の複素トーラスは、まさに楕円曲線であり、すべて代数的であるが、リーマンは、次元が 2 であるほとんどの複素トーラスは代数的でないことを発見した。代数的なトーラスのことをアーベル曲面と言い、それらはちょうど2次元のアーベル多様体である。その理論の大半は、高次元のトーラスやアーベル多様体の理論の特別な場合である。(同種を除いて)曲面が 2つの楕円曲線の積となる条件は、19世紀に盛んに研究された。 不変量: 多重種数(plurigenera)がみな 1 である。アーベル曲面は、S1×S1×S1×S1 に微分同相であるので、基本群は Z4 である。 ホッジダイアモンド:     1   2   2 1   4   1   2   2     1 例: 2つの楕円曲線の積。種数 2 の曲線のヤコビ多様体。 (ja)
rdfs:label
  • アーベル曲面 (ja)
  • アーベル曲面 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of