PAW法 (英: projector augmented wave method) は第一原理電子構造計算の手法の一つ。擬ポテンシャル法とLAPW法を一般化した手法であり、より効率的に密度汎関数計算を行うことを可能とする。P. E. Blöchlが1994年に発表した手法で、数ある全電子計算手法の中でも新しい。 価電子波動関数はイオンコア近傍では、コア波動関数との直交性を保つために短い波長で振動することが多い。このことは、波動関数を正確に表現するために多くのフーリエ成分(グリッドを用いる手法では細かいメッシュ)を必要とするため計算コスト上の問題となる。 PAW法ではこの問題を、短波長で振動する波動関数を、計算コスト的により扱いやすい長波長で滑らかな波動関数に変形し、この滑らかな波動関数から全電子の特性を計算することを可能とすることで解決する試みである。全電子計算の手法であるため、内核付近の記述や、光学応答の計算に適している。このアプローチは、シュレーディンガー描像からハイゼンベルク描像への転換にある意味で似ている。

Property Value
dbo:abstract
  • PAW法 (英: projector augmented wave method) は第一原理電子構造計算の手法の一つ。擬ポテンシャル法とLAPW法を一般化した手法であり、より効率的に密度汎関数計算を行うことを可能とする。P. E. Blöchlが1994年に発表した手法で、数ある全電子計算手法の中でも新しい。 価電子波動関数はイオンコア近傍では、コア波動関数との直交性を保つために短い波長で振動することが多い。このことは、波動関数を正確に表現するために多くのフーリエ成分(グリッドを用いる手法では細かいメッシュ)を必要とするため計算コスト上の問題となる。 PAW法ではこの問題を、短波長で振動する波動関数を、計算コスト的により扱いやすい長波長で滑らかな波動関数に変形し、この滑らかな波動関数から全電子の特性を計算することを可能とすることで解決する試みである。全電子計算の手法であるため、内核付近の記述や、光学応答の計算に適している。このアプローチは、シュレーディンガー描像からハイゼンベルク描像への転換にある意味で似ている。 (ja)
  • PAW法 (英: projector augmented wave method) は第一原理電子構造計算の手法の一つ。擬ポテンシャル法とLAPW法を一般化した手法であり、より効率的に密度汎関数計算を行うことを可能とする。P. E. Blöchlが1994年に発表した手法で、数ある全電子計算手法の中でも新しい。 価電子波動関数はイオンコア近傍では、コア波動関数との直交性を保つために短い波長で振動することが多い。このことは、波動関数を正確に表現するために多くのフーリエ成分(グリッドを用いる手法では細かいメッシュ)を必要とするため計算コスト上の問題となる。 PAW法ではこの問題を、短波長で振動する波動関数を、計算コスト的により扱いやすい長波長で滑らかな波動関数に変形し、この滑らかな波動関数から全電子の特性を計算することを可能とすることで解決する試みである。全電子計算の手法であるため、内核付近の記述や、光学応答の計算に適している。このアプローチは、シュレーディンガー描像からハイゼンベルク描像への転換にある意味で似ている。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1715 (xsd:integer)
dbo:wikiPageLength
  • 5565 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 86502870 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • PAW法 (英: projector augmented wave method) は第一原理電子構造計算の手法の一つ。擬ポテンシャル法とLAPW法を一般化した手法であり、より効率的に密度汎関数計算を行うことを可能とする。P. E. Blöchlが1994年に発表した手法で、数ある全電子計算手法の中でも新しい。 価電子波動関数はイオンコア近傍では、コア波動関数との直交性を保つために短い波長で振動することが多い。このことは、波動関数を正確に表現するために多くのフーリエ成分(グリッドを用いる手法では細かいメッシュ)を必要とするため計算コスト上の問題となる。 PAW法ではこの問題を、短波長で振動する波動関数を、計算コスト的により扱いやすい長波長で滑らかな波動関数に変形し、この滑らかな波動関数から全電子の特性を計算することを可能とすることで解決する試みである。全電子計算の手法であるため、内核付近の記述や、光学応答の計算に適している。このアプローチは、シュレーディンガー描像からハイゼンベルク描像への転換にある意味で似ている。 (ja)
  • PAW法 (英: projector augmented wave method) は第一原理電子構造計算の手法の一つ。擬ポテンシャル法とLAPW法を一般化した手法であり、より効率的に密度汎関数計算を行うことを可能とする。P. E. Blöchlが1994年に発表した手法で、数ある全電子計算手法の中でも新しい。 価電子波動関数はイオンコア近傍では、コア波動関数との直交性を保つために短い波長で振動することが多い。このことは、波動関数を正確に表現するために多くのフーリエ成分(グリッドを用いる手法では細かいメッシュ)を必要とするため計算コスト上の問題となる。 PAW法ではこの問題を、短波長で振動する波動関数を、計算コスト的により扱いやすい長波長で滑らかな波動関数に変形し、この滑らかな波動関数から全電子の特性を計算することを可能とすることで解決する試みである。全電子計算の手法であるため、内核付近の記述や、光学応答の計算に適している。このアプローチは、シュレーディンガー描像からハイゼンベルク描像への転換にある意味で似ている。 (ja)
rdfs:label
  • PAW法 (ja)
  • PAW法 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of