抽象代数学と代数幾何学において,可換環 R のスペクトル Spec(R) とは,R のすべての素イデアルからなる集合である.通常ザリスキー位相と構造層をともに考え,それにより Spec(R) は局所環付き空間である.この形の局所環付き空間はアフィンスキームと呼ばれる.

Property Value
dbo:abstract
  • 抽象代数学と代数幾何学において,可換環 R のスペクトル Spec(R) とは,R のすべての素イデアルからなる集合である.通常ザリスキー位相と構造層をともに考え,それにより Spec(R) は局所環付き空間である.この形の局所環付き空間はアフィンスキームと呼ばれる. (ja)
  • 抽象代数学と代数幾何学において,可換環 R のスペクトル Spec(R) とは,R のすべての素イデアルからなる集合である.通常ザリスキー位相と構造層をともに考え,それにより Spec(R) は局所環付き空間である.この形の局所環付き空間はアフィンスキームと呼ばれる. (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3013539 (xsd:integer)
dbo:wikiPageLength
  • 5218 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 76468835 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 抽象代数学と代数幾何学において,可換環 R のスペクトル Spec(R) とは,R のすべての素イデアルからなる集合である.通常ザリスキー位相と構造層をともに考え,それにより Spec(R) は局所環付き空間である.この形の局所環付き空間はアフィンスキームと呼ばれる. (ja)
  • 抽象代数学と代数幾何学において,可換環 R のスペクトル Spec(R) とは,R のすべての素イデアルからなる集合である.通常ザリスキー位相と構造層をともに考え,それにより Spec(R) は局所環付き空間である.この形の局所環付き空間はアフィンスキームと呼ばれる. (ja)
rdfs:label
  • 環のスペクトル (ja)
  • 環のスペクトル (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of