『方法』(ギリシア語: Περὶ μηχανικῶν θεωρημάτων πρὸς Ἐρατοσθένη ἔφοδος, 英語: The Method of Mechanical Theorems)は、古代ギリシアの博学者アルキメデスにより書かれた現存する主要な著作の1つと考えられている著作。この著作は、アルキメデスがアレクサンドリア図書館の館長であるエラトステネスに宛てた手紙の形をとっており、最初に記録された不可分(ときどきこれは無限小と呼ばれる)の明白な使用を含んでいる。この著作は元々は失われたと考えられていたが、1906年に有名な『アルキメデス・パリンプセスト』において再発見された。アルキメデスが初めて実証したてこの原理と、多くの特殊な形状において発見した質量中心(もしくは幾何中心)に依拠していることから、いわゆる「機械的方法」("mechanical method")が含まれている。 アルキメデスは厳密な数学の一部として不可分の方法を認めていなかったため、その結果を含む正式な論文ではこの方法を発表しなかった。これらの論文の中では、同じ定理を取り尽くし法により証明し、求める答えに収束する厳密な上界と下界を見つけている。それにもかかわらず、この機械的方法は彼がのちに厳密な証明を与える関係を発見するために使われたものであった。

Property Value
dbo:abstract
  • 『方法』(ギリシア語: Περὶ μηχανικῶν θεωρημάτων πρὸς Ἐρατοσθένη ἔφοδος, 英語: The Method of Mechanical Theorems)は、古代ギリシアの博学者アルキメデスにより書かれた現存する主要な著作の1つと考えられている著作。この著作は、アルキメデスがアレクサンドリア図書館の館長であるエラトステネスに宛てた手紙の形をとっており、最初に記録された不可分(ときどきこれは無限小と呼ばれる)の明白な使用を含んでいる。この著作は元々は失われたと考えられていたが、1906年に有名な『アルキメデス・パリンプセスト』において再発見された。アルキメデスが初めて実証したてこの原理と、多くの特殊な形状において発見した質量中心(もしくは幾何中心)に依拠していることから、いわゆる「機械的方法」("mechanical method")が含まれている。 アルキメデスは厳密な数学の一部として不可分の方法を認めていなかったため、その結果を含む正式な論文ではこの方法を発表しなかった。これらの論文の中では、同じ定理を取り尽くし法により証明し、求める答えに収束する厳密な上界と下界を見つけている。それにもかかわらず、この機械的方法は彼がのちに厳密な証明を与える関係を発見するために使われたものであった。 (ja)
  • 『方法』(ギリシア語: Περὶ μηχανικῶν θεωρημάτων πρὸς Ἐρατοσθένη ἔφοδος, 英語: The Method of Mechanical Theorems)は、古代ギリシアの博学者アルキメデスにより書かれた現存する主要な著作の1つと考えられている著作。この著作は、アルキメデスがアレクサンドリア図書館の館長であるエラトステネスに宛てた手紙の形をとっており、最初に記録された不可分(ときどきこれは無限小と呼ばれる)の明白な使用を含んでいる。この著作は元々は失われたと考えられていたが、1906年に有名な『アルキメデス・パリンプセスト』において再発見された。アルキメデスが初めて実証したてこの原理と、多くの特殊な形状において発見した質量中心(もしくは幾何中心)に依拠していることから、いわゆる「機械的方法」("mechanical method")が含まれている。 アルキメデスは厳密な数学の一部として不可分の方法を認めていなかったため、その結果を含む正式な論文ではこの方法を発表しなかった。これらの論文の中では、同じ定理を取り尽くし法により証明し、求める答えに収束する厳密な上界と下界を見つけている。それにもかかわらず、この機械的方法は彼がのちに厳密な証明を与える関係を発見するために使われたものであった。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 4145311 (xsd:integer)
dbo:wikiPageLength
  • 7229 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 89941131 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 『方法』(ギリシア語: Περὶ μηχανικῶν θεωρημάτων πρὸς Ἐρατοσθένη ἔφοδος, 英語: The Method of Mechanical Theorems)は、古代ギリシアの博学者アルキメデスにより書かれた現存する主要な著作の1つと考えられている著作。この著作は、アルキメデスがアレクサンドリア図書館の館長であるエラトステネスに宛てた手紙の形をとっており、最初に記録された不可分(ときどきこれは無限小と呼ばれる)の明白な使用を含んでいる。この著作は元々は失われたと考えられていたが、1906年に有名な『アルキメデス・パリンプセスト』において再発見された。アルキメデスが初めて実証したてこの原理と、多くの特殊な形状において発見した質量中心(もしくは幾何中心)に依拠していることから、いわゆる「機械的方法」("mechanical method")が含まれている。 アルキメデスは厳密な数学の一部として不可分の方法を認めていなかったため、その結果を含む正式な論文ではこの方法を発表しなかった。これらの論文の中では、同じ定理を取り尽くし法により証明し、求める答えに収束する厳密な上界と下界を見つけている。それにもかかわらず、この機械的方法は彼がのちに厳密な証明を与える関係を発見するために使われたものであった。 (ja)
  • 『方法』(ギリシア語: Περὶ μηχανικῶν θεωρημάτων πρὸς Ἐρατοσθένη ἔφοδος, 英語: The Method of Mechanical Theorems)は、古代ギリシアの博学者アルキメデスにより書かれた現存する主要な著作の1つと考えられている著作。この著作は、アルキメデスがアレクサンドリア図書館の館長であるエラトステネスに宛てた手紙の形をとっており、最初に記録された不可分(ときどきこれは無限小と呼ばれる)の明白な使用を含んでいる。この著作は元々は失われたと考えられていたが、1906年に有名な『アルキメデス・パリンプセスト』において再発見された。アルキメデスが初めて実証したてこの原理と、多くの特殊な形状において発見した質量中心(もしくは幾何中心)に依拠していることから、いわゆる「機械的方法」("mechanical method")が含まれている。 アルキメデスは厳密な数学の一部として不可分の方法を認めていなかったため、その結果を含む正式な論文ではこの方法を発表しなかった。これらの論文の中では、同じ定理を取り尽くし法により証明し、求める答えに収束する厳密な上界と下界を見つけている。それにもかかわらず、この機械的方法は彼がのちに厳密な証明を与える関係を発見するために使われたものであった。 (ja)
rdfs:label
  • 方法 (アルキメデスの著書) (ja)
  • 方法 (アルキメデスの著書) (ja)
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of