ラゲールの陪多項式(ラゲールのばいたこうしき、associated Laguerre polynomials)とは、常微分方程式 を満たす多項式 のことを言う。ただし は を満たす整数である。 のときの微分方程式はラゲールの微分方程式と呼ばれ、その解 をラゲールの多項式という。ラゲールの陪多項式とラゲールの多項式は次の関係で結ばれている。 またロドリゲスの公式 (Rodrigues's Formula) として以下の形にも表せる。 母関数は である。 のときについて という漸化式が成り立ち、後者から である。 量子力学において、球対称ポテンシャルのシュレディンガー方程式(代表的なものは水素原子におけるシュレーディンガー方程式)の動径方向の解は、ラゲールの陪多項式を用いて表される。

Property Value
dbo:abstract
  • ラゲールの陪多項式(ラゲールのばいたこうしき、associated Laguerre polynomials)とは、常微分方程式 を満たす多項式 のことを言う。ただし は を満たす整数である。 のときの微分方程式はラゲールの微分方程式と呼ばれ、その解 をラゲールの多項式という。ラゲールの陪多項式とラゲールの多項式は次の関係で結ばれている。 またロドリゲスの公式 (Rodrigues's Formula) として以下の形にも表せる。 母関数は である。 のときについて という漸化式が成り立ち、後者から である。 量子力学において、球対称ポテンシャルのシュレディンガー方程式(代表的なものは水素原子におけるシュレーディンガー方程式)の動径方向の解は、ラゲールの陪多項式を用いて表される。 (ja)
  • ラゲールの陪多項式(ラゲールのばいたこうしき、associated Laguerre polynomials)とは、常微分方程式 を満たす多項式 のことを言う。ただし は を満たす整数である。 のときの微分方程式はラゲールの微分方程式と呼ばれ、その解 をラゲールの多項式という。ラゲールの陪多項式とラゲールの多項式は次の関係で結ばれている。 またロドリゲスの公式 (Rodrigues's Formula) として以下の形にも表せる。 母関数は である。 のときについて という漸化式が成り立ち、後者から である。 量子力学において、球対称ポテンシャルのシュレディンガー方程式(代表的なものは水素原子におけるシュレーディンガー方程式)の動径方向の解は、ラゲールの陪多項式を用いて表される。 (ja)
dbo:wikiPageID
  • 2096510 (xsd:integer)
dbo:wikiPageLength
  • 1590 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 82261713 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:title
  • Laguerre Differential Equation (ja)
  • Laguerre Polynomial (ja)
  • Laguerre Differential Equation (ja)
  • Laguerre Polynomial (ja)
prop-ja:urlname
  • LaguerreDifferentialEquation (ja)
  • LaguerrePolynomial (ja)
  • LaguerreDifferentialEquation (ja)
  • LaguerrePolynomial (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • ラゲールの陪多項式(ラゲールのばいたこうしき、associated Laguerre polynomials)とは、常微分方程式 を満たす多項式 のことを言う。ただし は を満たす整数である。 のときの微分方程式はラゲールの微分方程式と呼ばれ、その解 をラゲールの多項式という。ラゲールの陪多項式とラゲールの多項式は次の関係で結ばれている。 またロドリゲスの公式 (Rodrigues's Formula) として以下の形にも表せる。 母関数は である。 のときについて という漸化式が成り立ち、後者から である。 量子力学において、球対称ポテンシャルのシュレディンガー方程式(代表的なものは水素原子におけるシュレーディンガー方程式)の動径方向の解は、ラゲールの陪多項式を用いて表される。 (ja)
  • ラゲールの陪多項式(ラゲールのばいたこうしき、associated Laguerre polynomials)とは、常微分方程式 を満たす多項式 のことを言う。ただし は を満たす整数である。 のときの微分方程式はラゲールの微分方程式と呼ばれ、その解 をラゲールの多項式という。ラゲールの陪多項式とラゲールの多項式は次の関係で結ばれている。 またロドリゲスの公式 (Rodrigues's Formula) として以下の形にも表せる。 母関数は である。 のときについて という漸化式が成り立ち、後者から である。 量子力学において、球対称ポテンシャルのシュレディンガー方程式(代表的なものは水素原子におけるシュレーディンガー方程式)の動径方向の解は、ラゲールの陪多項式を用いて表される。 (ja)
rdfs:label
  • ラゲールの陪多項式 (ja)
  • ラゲールの陪多項式 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-ja:knownFor of
is owl:sameAs of
is foaf:primaryTopic of