Property |
Value |
dbo:abstract
|
- 数学における エルミート多様体(英語: Hermitian manifold)とはリーマン多様体の複素微分幾何における類似である。より正確には、エルミート多様体とは、各点の正則接空間にエルミート内積を持ち、それらが滑らかに変化する複素多様体のことを指す。また、エルミート多様体を複素構造を保つリーマン計量を持つ実多様体として定義することもできる。 複素構造は、本質的には可積分条件をもつ概複素構造であり、この条件は多様体上にユニタリ構造((U(n) structure))をもたらす。可積分条件を落とすと、概エルミート多様体を得る。 任意の概エルミート多様体上に、計量と概複素構造にのみ依存する基本2形式(fundamental 2-form)と呼ばれる微分形式を定めることができる。基本2形式は常に非退化である。これが閉形式である(すなわちシンプレクティック形式である)という追加の可積分条件を課すことにより、概ケーラー構造(almost Kähler structure)を得る。もし概複素構造と基本2形式の両方が可積分であれば、 ケーラー構造を持つ。 (ja)
- 数学における エルミート多様体(英語: Hermitian manifold)とはリーマン多様体の複素微分幾何における類似である。より正確には、エルミート多様体とは、各点の正則接空間にエルミート内積を持ち、それらが滑らかに変化する複素多様体のことを指す。また、エルミート多様体を複素構造を保つリーマン計量を持つ実多様体として定義することもできる。 複素構造は、本質的には可積分条件をもつ概複素構造であり、この条件は多様体上にユニタリ構造((U(n) structure))をもたらす。可積分条件を落とすと、概エルミート多様体を得る。 任意の概エルミート多様体上に、計量と概複素構造にのみ依存する基本2形式(fundamental 2-form)と呼ばれる微分形式を定めることができる。基本2形式は常に非退化である。これが閉形式である(すなわちシンプレクティック形式である)という追加の可積分条件を課すことにより、概ケーラー構造(almost Kähler structure)を得る。もし概複素構造と基本2形式の両方が可積分であれば、 ケーラー構造を持つ。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 14825 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学における エルミート多様体(英語: Hermitian manifold)とはリーマン多様体の複素微分幾何における類似である。より正確には、エルミート多様体とは、各点の正則接空間にエルミート内積を持ち、それらが滑らかに変化する複素多様体のことを指す。また、エルミート多様体を複素構造を保つリーマン計量を持つ実多様体として定義することもできる。 複素構造は、本質的には可積分条件をもつ概複素構造であり、この条件は多様体上にユニタリ構造((U(n) structure))をもたらす。可積分条件を落とすと、概エルミート多様体を得る。 任意の概エルミート多様体上に、計量と概複素構造にのみ依存する基本2形式(fundamental 2-form)と呼ばれる微分形式を定めることができる。基本2形式は常に非退化である。これが閉形式である(すなわちシンプレクティック形式である)という追加の可積分条件を課すことにより、概ケーラー構造(almost Kähler structure)を得る。もし概複素構造と基本2形式の両方が可積分であれば、 ケーラー構造を持つ。 (ja)
- 数学における エルミート多様体(英語: Hermitian manifold)とはリーマン多様体の複素微分幾何における類似である。より正確には、エルミート多様体とは、各点の正則接空間にエルミート内積を持ち、それらが滑らかに変化する複素多様体のことを指す。また、エルミート多様体を複素構造を保つリーマン計量を持つ実多様体として定義することもできる。 複素構造は、本質的には可積分条件をもつ概複素構造であり、この条件は多様体上にユニタリ構造((U(n) structure))をもたらす。可積分条件を落とすと、概エルミート多様体を得る。 任意の概エルミート多様体上に、計量と概複素構造にのみ依存する基本2形式(fundamental 2-form)と呼ばれる微分形式を定めることができる。基本2形式は常に非退化である。これが閉形式である(すなわちシンプレクティック形式である)という追加の可積分条件を課すことにより、概ケーラー構造(almost Kähler structure)を得る。もし概複素構造と基本2形式の両方が可積分であれば、 ケーラー構造を持つ。 (ja)
|
rdfs:label
|
- エルミート多様体 (ja)
- エルミート多様体 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |