AlphaZero(アルファゼロ)は、DeepMindによって開発されたコンピュータプログラムである。汎化されたAlphaGo Zeroのアプローチを使用している。 2017年12月5日、DeepMindチームはAlphaGo Zeroのアプローチを汎化したプログラムであるAlphaZeroの論文をarXiv上で発表した。AlphaZeroは24時間以内にチェス、将棋、囲碁の世界チャンピオンプログラムであるStockfish、elmo、3日間学習させたAlphaGo Zeroを破るレベルに達した。AlphaZeroは、オープニングブック(序盤定跡データベース)とエンドゲームの表(終盤を解析したデータベース)を参照せずに、4時間の自己対戦だけでStockfishを凌駕した。 それまでチェスおよび将棋のAIで一般的であったアルファ・ベータ探索ではなく、囲碁AIで成功を収めたモンテカルロ木探索(モンテカルロ法の応用)とディープラーニングをこれらのゲームに対して適用しても強いAIが作れることを実証した。

Property Value
dbo:abstract
  • AlphaZero(アルファゼロ)は、DeepMindによって開発されたコンピュータプログラムである。汎化されたAlphaGo Zeroのアプローチを使用している。 2017年12月5日、DeepMindチームはAlphaGo Zeroのアプローチを汎化したプログラムであるAlphaZeroの論文をarXiv上で発表した。AlphaZeroは24時間以内にチェス、将棋、囲碁の世界チャンピオンプログラムであるStockfish、elmo、3日間学習させたAlphaGo Zeroを破るレベルに達した。AlphaZeroは、オープニングブック(序盤定跡データベース)とエンドゲームの表(終盤を解析したデータベース)を参照せずに、4時間の自己対戦だけでStockfishを凌駕した。 それまでチェスおよび将棋のAIで一般的であったアルファ・ベータ探索ではなく、囲碁AIで成功を収めたモンテカルロ木探索(モンテカルロ法の応用)とディープラーニングをこれらのゲームに対して適用しても強いAIが作れることを実証した。 (ja)
  • AlphaZero(アルファゼロ)は、DeepMindによって開発されたコンピュータプログラムである。汎化されたAlphaGo Zeroのアプローチを使用している。 2017年12月5日、DeepMindチームはAlphaGo Zeroのアプローチを汎化したプログラムであるAlphaZeroの論文をarXiv上で発表した。AlphaZeroは24時間以内にチェス、将棋、囲碁の世界チャンピオンプログラムであるStockfish、elmo、3日間学習させたAlphaGo Zeroを破るレベルに達した。AlphaZeroは、オープニングブック(序盤定跡データベース)とエンドゲームの表(終盤を解析したデータベース)を参照せずに、4時間の自己対戦だけでStockfishを凌駕した。 それまでチェスおよび将棋のAIで一般的であったアルファ・ベータ探索ではなく、囲碁AIで成功を収めたモンテカルロ木探索(モンテカルロ法の応用)とディープラーニングをこれらのゲームに対して適用しても強いAIが作れることを実証した。 (ja)
dbo:wikiPageID
  • 3712317 (xsd:integer)
dbo:wikiPageLength
  • 5034 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 81083345 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • AlphaZero(アルファゼロ)は、DeepMindによって開発されたコンピュータプログラムである。汎化されたAlphaGo Zeroのアプローチを使用している。 2017年12月5日、DeepMindチームはAlphaGo Zeroのアプローチを汎化したプログラムであるAlphaZeroの論文をarXiv上で発表した。AlphaZeroは24時間以内にチェス、将棋、囲碁の世界チャンピオンプログラムであるStockfish、elmo、3日間学習させたAlphaGo Zeroを破るレベルに達した。AlphaZeroは、オープニングブック(序盤定跡データベース)とエンドゲームの表(終盤を解析したデータベース)を参照せずに、4時間の自己対戦だけでStockfishを凌駕した。 それまでチェスおよび将棋のAIで一般的であったアルファ・ベータ探索ではなく、囲碁AIで成功を収めたモンテカルロ木探索(モンテカルロ法の応用)とディープラーニングをこれらのゲームに対して適用しても強いAIが作れることを実証した。 (ja)
  • AlphaZero(アルファゼロ)は、DeepMindによって開発されたコンピュータプログラムである。汎化されたAlphaGo Zeroのアプローチを使用している。 2017年12月5日、DeepMindチームはAlphaGo Zeroのアプローチを汎化したプログラムであるAlphaZeroの論文をarXiv上で発表した。AlphaZeroは24時間以内にチェス、将棋、囲碁の世界チャンピオンプログラムであるStockfish、elmo、3日間学習させたAlphaGo Zeroを破るレベルに達した。AlphaZeroは、オープニングブック(序盤定跡データベース)とエンドゲームの表(終盤を解析したデータベース)を参照せずに、4時間の自己対戦だけでStockfishを凌駕した。 それまでチェスおよび将棋のAIで一般的であったアルファ・ベータ探索ではなく、囲碁AIで成功を収めたモンテカルロ木探索(モンテカルロ法の応用)とディープラーニングをこれらのゲームに対して適用しても強いAIが作れることを実証した。 (ja)
rdfs:label
  • AlphaZero (ja)
  • AlphaZero (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of