Data Table
PropertyValue
dbpedia-owl:abstract
  • 数学における集合 (しゅうごう、英: set, 仏: ensemble, 独: Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、英: element; 要素) という。集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。慣例的に、ある種の集合が系 (けい、英: system) や族 (ぞく、英: family) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 7442 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 13274 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 79 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 58359622 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 数学における集合 (しゅうごう、英: set, 仏: ensemble, 独: Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、英: element; 要素) という。集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。慣例的に、ある種の集合が系 (けい、英: system) や族 (ぞく、英: family) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。
rdfs:label
  • 集合
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of