Data Table
PropertyValue
dbpedia-owl:abstract
  • 微分位相幾何学もしくは微分トポロジー(英語:differential topology)は、多様体の微分可能構造に注目する幾何学の一分野。微分可能構造という位相のみでは決まらないものを扱うため純粋な位相幾何学として扱うのは難しい部分もあるが,位相が与えられている多様体の微分可能構造つまり微積分ができるような構造を調べるということで位相多様体を調べるもので,微分可能構造まで込めた多様体に距離や曲率を定めて研究を行う微分幾何学に比べ自由度は高いことから位相幾何学であるとされている。解析学や微分幾何学と位相幾何学の学際研究が非常に有益なことは初期から知られており、局所的な性質を扱う微分幾何学と大域的な性質を扱う位相幾何学の対照的な2分野による多様体の研究は双方の発展を促した。古くはフェリックス・クラインやアンリ・ポアンカレまで遡れ、現在微分位相幾何学と呼ばれているものはルネ・トムやジョン・ミルナーといった数学者によって創り出された。
dbpedia-owl:wikiPageID
  • 834535 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 2863 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 104 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 54249983 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 微分位相幾何学もしくは微分トポロジー(英語:differential topology)は、多様体の微分可能構造に注目する幾何学の一分野。微分可能構造という位相のみでは決まらないものを扱うため純粋な位相幾何学として扱うのは難しい部分もあるが,位相が与えられている多様体の微分可能構造つまり微積分ができるような構造を調べるということで位相多様体を調べるもので,微分可能構造まで込めた多様体に距離や曲率を定めて研究を行う微分幾何学に比べ自由度は高いことから位相幾何学であるとされている。解析学や微分幾何学と位相幾何学の学際研究が非常に有益なことは初期から知られており、局所的な性質を扱う微分幾何学と大域的な性質を扱う位相幾何学の対照的な2分野による多様体の研究は双方の発展を促した。古くはフェリックス・クラインやアンリ・ポアンカレまで遡れ、現在微分位相幾何学と呼ばれているものはルネ・トムやジョン・ミルナーといった数学者によって創り出された。
rdfs:label
  • 微分位相幾何学
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of