Data Table
PropertyValue
dbpedia-owl:abstract
  • 回転対称(かいてんたいしょう)は、図形を特徴付ける対称性の一群である。nを2以上の整数とし、ある中心(2次元図形の場合)または軸(3次元図形の場合)の周りを (360 / n) °回転させると自らと重なる性質を、n回対称、またはn相対称、(360 / n) 度対称などという。たとえば、n = 3 の場合、120°回転させると自らと重なる3回対称となる。なお n < 2(ただし n ≠ 0) のnに対しても形式的にn回対称の定義はできるが、n = 1 の場合、360°回転して自らと重なるのは自明なので、1回対称は対称性とはみなさない。また、n回対称ならば常に−n回対称であるため、負数回対称について論ずるべきことはない。
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 1438458 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 1738 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 37 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 57374930 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
dcterms:subject
rdfs:comment
  • 回転対称(かいてんたいしょう)は、図形を特徴付ける対称性の一群である。nを2以上の整数とし、ある中心(2次元図形の場合)または軸(3次元図形の場合)の周りを (360 / n) °回転させると自らと重なる性質を、n回対称、またはn相対称、(360 / n) 度対称などという。たとえば、n = 3 の場合、120°回転させると自らと重なる3回対称となる。なお n < 2(ただし n ≠ 0) のnに対しても形式的にn回対称の定義はできるが、n = 1 の場合、360°回転して自らと重なるのは自明なので、1回対称は対称性とはみなさない。また、n回対称ならば常に−n回対称であるため、負数回対称について論ずるべきことはない。
rdfs:label
  • 回転対称
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of