Data Table
PropertyValue
dbpedia-owl:abstract
  • 命題論理(めいだいろんり、()英: propositional logic)とは、数理論理学(記号論理学)の基礎的な一部門であり、命題全体を1つの記号に置き換えて単純化し、論理演算を表す記号(論理記号・論理演算子)を用いて、その命題(記号)間の結合パターンを表現・研究・把握することを目的とした分野のこと。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。命題を1つの記号で大まかに置き換える命題論理に対して、命題の述語(P)と主語(S)を、関数のF(x)のように別記号で表現し、更に量化子で主語(S)の数・量・範囲もいくらか表現し分けることを可能にした、すなわちより詳細に命題の内部構造を表現できるようにしたものを、述語論理と呼ぶ。
dbpedia-owl:wikiPageID
  • 535783 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 11008 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 74 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 57366301 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 命題論理(めいだいろんり、()英: propositional logic)とは、数理論理学(記号論理学)の基礎的な一部門であり、命題全体を1つの記号に置き換えて単純化し、論理演算を表す記号(論理記号・論理演算子)を用いて、その命題(記号)間の結合パターンを表現・研究・把握することを目的とした分野のこと。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。命題を1つの記号で大まかに置き換える命題論理に対して、命題の述語(P)と主語(S)を、関数のF(x)のように別記号で表現し、更に量化子で主語(S)の数・量・範囲もいくらか表現し分けることを可能にした、すなわちより詳細に命題の内部構造を表現できるようにしたものを、述語論理と呼ぶ。
rdfs:label
  • 命題論理
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of