Data Table
PropertyValue
dbpedia-owl:abstract
  • 数学や物理学では、可積分系 (integrable systems) と名付けられた様々な考え方が知られている。微分可能な系の一般論では、フロベニウス可積分性 (Frobenius integrability) が過剰な決定系として知られている。ハミルトン力学系の古典理論では、リウヴィル可積分性 (Liouville integrability) がある。より一般的には、微分方程式の可積分性は、相空間の不変部分多様体による葉層 (foliation) の存在に関係している。これらの考え方の各々は、葉層のアイデアを応用しているが、同じではない。量子力学や統計力学モデルの設定には完備可積分性 (complete integrability) や完全可積分性 (exact solvability) という考え方もある。可積分系は、微分作用素の代数幾何学へ引き戻して考える場合もある。
dbpedia-owl:wikiPageID
  • 2896859 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 23572 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 53 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 56551313 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-ja:id
  • p/i051330
prop-ja:title
  • Integrable system
prop-ja:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 数学や物理学では、可積分系 (integrable systems) と名付けられた様々な考え方が知られている。微分可能な系の一般論では、フロベニウス可積分性 (Frobenius integrability) が過剰な決定系として知られている。ハミルトン力学系の古典理論では、リウヴィル可積分性 (Liouville integrability) がある。より一般的には、微分方程式の可積分性は、相空間の不変部分多様体による葉層 (foliation) の存在に関係している。これらの考え方の各々は、葉層のアイデアを応用しているが、同じではない。量子力学や統計力学モデルの設定には完備可積分性 (complete integrability) や完全可積分性 (exact solvability) という考え方もある。可積分系は、微分作用素の代数幾何学へ引き戻して考える場合もある。
rdfs:label
  • 可積分系
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of