Data Table
PropertyValue
dbpedia-owl:abstract
  • 数学において関数の積分はその関数と x 軸の間の図形の面積とみなすことができる。ルベーグ積分(ルベーグせきぶん、Lebesgue integral)とは、より広い種類の関数が積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。このような積分の拡張が必要となった背景には、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えるために非常に繊細な議論が必要だったということがある。この点について、ルベーグ積分では、関数列の極限が被積分関数として適当かどうかを考える必要がなく、積分と極限操作の交換も簡単な十分条件が分かっている。ルベーグ積分の名前は、数学者のアンリ・ルベーグ(Henri Lebesgue、1875年 - 1941年)に由来している。
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 344302 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 11024 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 97 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 58486949 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 数学において関数の積分はその関数と x 軸の間の図形の面積とみなすことができる。ルベーグ積分(ルベーグせきぶん、Lebesgue integral)とは、より広い種類の関数が積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。このような積分の拡張が必要となった背景には、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えるために非常に繊細な議論が必要だったということがある。この点について、ルベーグ積分では、関数列の極限が被積分関数として適当かどうかを考える必要がなく、積分と極限操作の交換も簡単な十分条件が分かっている。ルベーグ積分の名前は、数学者のアンリ・ルベーグ(Henri Lebesgue、1875年 - 1941年)に由来している。
rdfs:label
  • ルベーグ積分
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of