Data Table
PropertyValue
dbpedia-owl:abstract
  • 数学におけるシンプレクティック多様体(symplectic manifold)は、シンプレクティック形式と呼ばれる非退化な閉形式である 2-形式を持つ滑らかな多様体である。シンプレクティック多様体の研究分野はシンプレクティック幾何学やシンプレクティックトポロジーと呼ばれる。シンプレクティック多様体は、古典力学の抽象的定式化であるハミルトン力学などにおいて多様体の余接バンドルとして自然に表れるもので、この分野に対して大きな動機付けを与えた。実際、系の取り得るすべての配位が成す集合を多様体としてモデル化すると、この多様体は系の相空間を記述する。シンプレクティック多様体上の微分可能な実数値関数 H はエネルギー函数(energy function)を与えることができ、これをハミルトニアンと呼ぶ。どのようなハミルトニアンに対してもハミルトンベクトル場が対応付けられる。ハミルトンベクトル場の積分曲線はハミルトン方程式の解曲線になる。ハミルトンベクトル場は、シンプレクティック多様体上のフロー(ハミルトンフロー、あるいは、シンプレクティック同相写像と呼ばれる)を定め、リウヴィルの定理によれば、ハミルトンフローは相空間上の体積要素を保存する。
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 260752 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 20484 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 81 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 56988447 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-ja:author
  • Ü. Lumiste
prop-ja:id
  • 3672 (xsd:integer)
  • s/s091860
prop-ja:title
  • Examples of symplectic manifolds
  • Symplectic Structure
prop-ja:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 数学におけるシンプレクティック多様体(symplectic manifold)は、シンプレクティック形式と呼ばれる非退化な閉形式である 2-形式を持つ滑らかな多様体である。シンプレクティック多様体の研究分野はシンプレクティック幾何学やシンプレクティックトポロジーと呼ばれる。シンプレクティック多様体は、古典力学の抽象的定式化であるハミルトン力学などにおいて多様体の余接バンドルとして自然に表れるもので、この分野に対して大きな動機付けを与えた。実際、系の取り得るすべての配位が成す集合を多様体としてモデル化すると、この多様体は系の相空間を記述する。シンプレクティック多様体上の微分可能な実数値関数 H はエネルギー函数(energy function)を与えることができ、これをハミルトニアンと呼ぶ。どのようなハミルトニアンに対してもハミルトンベクトル場が対応付けられる。ハミルトンベクトル場の積分曲線はハミルトン方程式の解曲線になる。ハミルトンベクトル場は、シンプレクティック多様体上のフロー(ハミルトンフロー、あるいは、シンプレクティック同相写像と呼ばれる)を定め、リウヴィルの定理によれば、ハミルトンフローは相空間上の体積要素を保存する。
rdfs:label
  • シンプレクティック多様体
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of